Network Intrusion Detection Systems (NIDSs) are indispensable defensive tools against various cyberattacks. Lightweight, multipurpose, and anomaly-based detection NIDSs employ several methods to build profiles for normal and malicious behaviors. In this paper, we design, implement, and evaluate the performance of machine-learning-based NIDS in IoT networks. Specifically, we study six supervised learning methods that belong to three different classes: (1) ensemble methods, (2) neural network methods, and (3) kernel methods. To evaluate the developed NIDSs, we use the distilled-Kitsune-2018 and NSL-KDD datasets, both consisting of a contemporary real-world IoT network traffic subjected to different network attacks. Standard performance evaluation metrics from the machine-learning literature are used to evaluate the identification accuracy, error rates, and inference speed. Our empirical analysis indicates that ensemble methods provide better accuracy and lower error rates compared with neural network and kernel methods. On the other hand, neural network methods provide the highest inference speed which proves their suitability for high-bandwidth networks. We also provide a comparison with state-of-the-art solutions and show that our best results are better than any prior art by 1~20%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749547 | PMC |
http://dx.doi.org/10.3390/s22010241 | DOI Listing |
BMC Med Educ
January 2025
Riphah international university, Rawalpindi, Pakistan.
Background: Reflection fosters self-regulated learning by enabling learners to critically evaluate their performance, identify gaps, and make plans to improve. Feedback, in turn, provides external insights that complement reflection, helping learners recognize their strengths and weaknesses, adjust their learning strategies, and enhance clinical reasoning and decision-making skills. However, reflection alone may not produce the desirable effects unless coupled with feedback.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.
Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Department of Management Information Systems, National Chung Hsing University, Taichung, 402, Taiwan.
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Ophthalmology, The Affiliated Hospital of Guilin Medical University, Guilin, China.
Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!