Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.

Sensors (Basel)

Laboratoire Irène Joliot-Curie, Université Paris-Saclay, UMR CNRS, Rue Ampère, Bâtiment 200, 91898 Orsay, France.

Published: December 2021

Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light-matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre-Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747713PMC
http://dx.doi.org/10.3390/s22010132DOI Listing

Publication Analysis

Top Keywords

shack-hartmann wavefront
12
wavefront sensing
8
optical vortices
8
single-shot amplitude
8
amplitude wavefront
8
wavefront modal
8
modal content
8
content characterization
8
wavefront sensor
8
vortex beams
8

Similar Publications

The Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view.

View Article and Find Full Text PDF

Advancing wavefront sensing: meta Shack-Hartmann sensor enhances phase imaging.

Light Sci Appl

December 2024

The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.

Article Synopsis
  • - A new wavefront sensor using a meta-lens array has been created, overcoming the size and curvature limitations of traditional micro-lenses.
  • - This innovation leads to better sampling density and higher angular resolution for measuring wave phases.
  • - The use of metasurfaces allows for improved characterization of complex wavefronts on a smaller scale, advancing optical phase measurement technology.
View Article and Find Full Text PDF

The Shack-Hartmann wavefront sensor (SHWFS) is critical in adaptive optics (AO) for measuring wavefronts via centroid shifts in sub-apertures. Under extreme conditions like strong turbulence or long-distance transmission, wavefront information degrades significantly, leading to undersampled slope data and severely reduced reconstruction accuracy. Conventional algorithms struggle in these scenarios, and existing neural network approaches are not sufficiently advanced.

View Article and Find Full Text PDF

The Shack-Hartmann wavefront sensor (SH-WS) is primarily used to detect the beam wavefront shape, which can be used to detect various perturbations in the atmospheric transmission of high-energy lasers. In this paper, we propose the use of spatial frequency to characterize the shape of the wavefront aberration based on the three-dimensional structure of the Zernike aberration. Based on the characteristics of the frequency distribution of the wavefront, we demonstrate a two-dimensional mixed-aperture diffractive lens wavefront sensor (MADL-WS).

View Article and Find Full Text PDF

Shack-Hartmann-based wavefront sensing combined with deep learning, due to its fast, accurate, and large dynamic range, has been widely studied in many fields including ocular aberration measurement. Problems such as noise and corneal reflection affect the accuracy of detection in practical measuring ocular aberration systems. This paper establishes a framework comprising of a noise-added model, Hartmannograms with corneal reflections and the corneal reflection elimination algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!