Riveted joints are a common way to connect elements and subassemblies in the automotive industry. In the assembly process, tubular rivets are loaded axially with ca. 3 kN forces, and these loads can cause cracks and delamination in the rivet material. Such effects at the quality control stage disqualify the product in further assembly process. The article presents an analysis of the fracture mechanism of E215 low-carbon steel tubular rivets used to join modules of driver and passenger safety systems (airbags) in vehicles. Finite element method (FEM) simulation and material testing were used to verify the stresses and analysis of the rivet fracture. Numerical tests determined the state of stress during rivet forming using the FEM-EA method based on the explicit integration of central differences. Light microscopy (LM), scanning electron microscopy (SEM) and chemical composition analysis (SEM-EDS) were performed to investigate the microstructure of the rivet material and to analyze the cracks. Results showed that the cause of rivet cracking is the accumulation and exceeding of critical tensile stresses in the rivet flange during the tube processing and the final riveting (forming) process. Moreover, it was discovered that rivet fracture is largely caused by structural defects (tertiary cementite Fe,MnC along the boundaries of prior austenite grains) in the material resulting from the incorrectly selected parameters of the final heat treatment of the prefabricate (tube) from which the rivet was produced. The FEM simulation of the riveting and structural characterization results correlated well, so the rivet forming process and fracture mechanism could be fully investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746241 | PMC |
http://dx.doi.org/10.3390/ma15010374 | DOI Listing |
Precision glass molding (PGM) technology, as an efficient and straightforward method for producing glass lenses, has been widely applied in the mass production of aspheric glass lenses. However, molding complex surfaces such as free-form and array surfaces is still in its infancy. To reveal the variations of temperature and stress of microlens array (MLA) optical elements during the molding process, a simulation model was established using the finite element method (FEM), and the heating and forming stages of a chalcogenide glass MLA optical element were studied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Off-grid water pumping systems (OGWPS) have become an increasingly popular area of research in the search for sustainable energy solutions. This paper presents a finite element method (FEM)-based design and analysis of Brushless-DC (BLDC) and Switched Reluctance Motors (SRM) designed for low-power water pumping applications. Utilizing adaptive finite element analysis (FEA), both motors were designed with identical ratings and design parameters to ensure a fair comparison.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
December 2024
Department of Orthodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India.
Introduction: This study describes a novel device known as "SAVE" to effectively protract the deficient maxilla in class III malocclusion by quantifying and evaluating the changes in the maxilla through a finite element analysis (FEA).
Materials And Methods: The patented novel SAVE device was three-dimensionally modeled using Autodesk Fusion 360. An existing computed tomography (CT) scan of a patient exhibiting class III malocclusion was used to generate a finite element (FE) model.
Med Phys
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.
Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!