This study deals with the development of antifouling ultrafiltration membranes based on polysulfone (PSF) for wastewater treatment and the concentration and purification of hemicellulose and lignin in the pulp and paper industry. The efficient simple and reproducible technique of PSF membrane modification to increase antifouling performance by simultaneous addition of triblock copolymer polyethylene glycol-polypropylene glycol-polyethylene glycol (Synperonic F108, M =14 × 10 g mol) to the casting solution and addition of polyacrylic acid (PAA, M = 250 × 10 g mol) to the coagulation bath is proposed for the first time. The effect of the PAA concentration in the aqueous solution on the PSF/Synperonic F108 membrane structure, surface characteristics, performance, and antifouling stability was investigated. PAA concentrations were varied from 0.35 to 2.0 wt.%. Membrane composition, structure, and topology were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The addition of PAA into the coagulation bath was revealed to cause the formation of a thicker and denser selective layer with decreasing its pore size and porosity; according to the structural characterization, an interpolymer complex of the two additives was formed on the surface of the PSF membrane. Hydrophilicity of the membrane selective layer surface was shown to increase significantly. The selective layer surface charge was found to become more negative in comparison to the reference membrane. It was shown that PSF/Synperonic F108/PAA membranes are characterized by better antifouling performance in ultrafiltration of humic acid solution and thermomechanical pulp mill (ThMP) process water. Membrane modification with PAA results in higher ThMP process water flux, fouling recovery ratio, and hemicellulose and total lignin rejection compared to the reference PSF/Synperonic F108 membrane. This suggests the possibility of applying the developed membranes for hemicellulose concentration and purification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746107 | PMC |
http://dx.doi.org/10.3390/ma15010359 | DOI Listing |
Biomater Adv
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico. Electronic address:
Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Accident and Emergency, Birmingham Heartlands Hospital, Birmingham, UK.
Heat stroke is characterised by hyperthermia and acute encephalopathy. We describe a rare case of classical heat stroke secondary to prolonged sauna use with multiorgan sequelae including seizures, liver injury, kidney injury, disseminated intravascular coagulation, rhabdomyolysis and type 2 myocardial infarction. The patient was treated with external cooling, intravenous fluid therapy and blood products, and made a full recovery without need for advanced organ support.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA.
Cellulose microgel beads fabricated using the dropping technique suffer from structural irregularity and mechanical variability. This limits their translation to biomedical applications that are sensitive to variations in material properties. Ionic salts are often uncontrolled by-products of this technique, despite the known effects of ionic salts on cellulose assembly.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States.
Polymeric membranes fabricated via the nonsolvent-induced phase separation process rely heavily on toxic aprotic organic solvents, like -methyl-pyrrolidine (NMP) and dimethylformamide. We suggest that the "saloplastic" nature of polyelectrolyte complexes (PECs) makes them an excellent candidate for fabricating next-generation water purification membranes that use a more sustainable aqueous phase separation process. In this study, we investigate how the properties of PECs and their interactions with salt can form pore-containing membranes from the strong polyelectrolytes poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) in the presence of potassium bromide (KBr).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road(S), Nanjing 211816, China.
Anion-doped perovskite membranes with a hollow fiber geometry have excellent oxygen separation performance. However, during the fabrication process of hollow fiber membranes, soaking the precursor in deionized water leads to elemental dissolution, especially anion dissolution. To prevent metal and anion element dissolution, an improved one-step thermal processing approach was proposed in which saturated solutions were used as internal and external coagulation baths, effectively controlling the stoichiometric ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!