NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and Vickers hardness tests. The resulting microstructures consisted of a γ-Ni and NiB matrix, strengthened with Co and W, NiSi, CrB, CrC3, CrC, WC/WC phases. In coatings with 30, 40 and 50 wt.% WC-12Co, a solid solution, strengthened multi-matrix NiCrWCo phase formed, which yielded a higher matrix hardness. Wear tests that monitored the friction coefficients were performed with a tribometer that contained a ball-on-disc configuration, AlO counter-body and reciprocal sliding mode at room temperature. The major wear mode on the NiCrBSi coatings without the WC-12Co was adhesive with a high wear rate and visible material loss by flaking, delamination and micro-ploughing. The addition of WC-12Co to the NiCrBSi coating significantly increased the wear resistance and changed the major wear mechanism from adhesion to three-body abrasion and fatigue wear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746184PMC
http://dx.doi.org/10.3390/ma15010342DOI Listing

Publication Analysis

Top Keywords

solid solution
8
solution strengthened
8
wc-12co nicrbsi
8
wt% wc-12co
8
major wear
8
wc-12co
6
wear
6
tribological properties
4
properties solid
4
strengthened laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!