Concrete is the most widely used building material, but it is also a recognized pollutant, causing significant issues for sustainability in terms of resource depletion, energy use, and greenhouse gas emissions. As a result, efforts should be concentrated on reducing concrete's environmental consequences in order to increase its long-term viability. In order to design environmentally friendly concrete mixtures, this research intended to create a prediction model for the compressive strength of those mixtures. The concrete mixtures that were used in this study to build our proposed prediction model are concrete mixtures that contain both recycled aggregate concrete (RAC) and ground granulated blast-furnace slag (GGBFS). A white-box machine learning model known as multivariate polynomial regression (MPR) was developed to predict the compressive strength of eco-friendly concrete. The model was compared with the other two machine learning models, where one is also a white-box machine learning model, namely linear regression (LR), and the other is the black-box machine learning model, which is a support vector machine (SVM). The newly suggested model shows robust estimation capabilities and outperforms the other two models in terms of (coefficient of determination) and RMSE (root mean absolute error) measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746230PMC
http://dx.doi.org/10.3390/ma15010317DOI Listing

Publication Analysis

Top Keywords

machine learning
16
prediction model
12
compressive strength
12
concrete mixtures
12
learning model
12
model
8
predict compressive
8
strength eco-friendly
8
eco-friendly concrete
8
multivariate polynomial
8

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!