Acrylate and Methacrylate Polymers' Applications: Second Life with Inexpensive and Sustainable Recycling Approaches.

Materials (Basel)

Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy.

Published: December 2021

AI Article Synopsis

  • Polymers, particularly acrylate and methacrylate types, are versatile materials with applications in various fields, yet many commercial polymers face limitations due to their inert nature.
  • These acrylate and methacrylate polymers offer benefits like biocompatibility, low cost, and potential for recycling, making them candidates for medical, electronic, food packaging, and environmental uses.
  • Despite their advantages, current bioplastics, including those made from acrylic polymers, struggle to fully replace fossil-fuel-based products, leading to a focus on strategies for developing recyclable composites.

Article Abstract

Polymers are widely employed in several fields thanks to their wide versatility and the easy derivatization routes. However, a wide range of commercial polymers suffer from limited use on a large scale due to their inert nature. Nowadays, acrylate and methacrylate polymers, which are respectively derivatives of acrylic or methacrylic acid, are among the most proposed materials for their useful characteristics like good biocompatibility, capping ability toward metal clusters, low price, potentially recyclability and reusability. Here, we discuss the advantages and challenges of this class of smart polymers focusing our attention on their current technological applications in medical, electronic, food packaging and environmental remediation fields. Furthermore, we deal with the main issue of their recyclability, considering that the current commercial bioplastics are not yet able to meet the global needs as much as to totally replace fossil-fuel-based products. Finally, the most accredited strategies to reach recyclable composites based on acrylic polymers are described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746205PMC
http://dx.doi.org/10.3390/ma15010282DOI Listing

Publication Analysis

Top Keywords

acrylate methacrylate
8
polymers
5
methacrylate polymers'
4
polymers' applications
4
applications second
4
second life
4
life inexpensive
4
inexpensive sustainable
4
sustainable recycling
4
recycling approaches
4

Similar Publications

Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.

Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.

View Article and Find Full Text PDF

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer.

View Article and Find Full Text PDF

Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA) as a comonomer was investigated for its suitability for the CST adjustment of LCST-type polymers. Accordingly, a library of mPEGMA-based copolymers was established with varying compositions () using four main comonomers, namely di(ethylene glycol) ethyl ether acrylate, -isopropyl acrylamide and methacrylamide, and mPEGMA, with different CST values (cloud points, , and clearing points, , by turbidimetry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!