The goal of the study was to establish a procedure for improving the efficiency of supercritical carbon dioxide (scCO) extraction of L. spp. (Greek oregano) and enhancing the quality of obtained extracts. Microwave and enzymatic pretreatments of the plant material were applied prior to the scCO extraction. It was determined that the microwave pretreatment with irradiation power 360 W during 2 min accelerated the extraction of lipophilic compounds and provided a twofold higher extraction yield compared to the control. Moreover, this pretreatment also led to an increase in oxygenated monoterpenes content and the most dominant component carvacrol, as well as the extracts' antioxidant activity. The enzymatic pretreatment caused a significant increase in the extraction yield and the attainment of the extract with the most potent antioxidant properties. Coupling the pretreatments with scCO extraction improves the process of obtaining high value lipophilic products of oregano in terms of utilization of the plant material, acceleration of the extraction with the possibility to adjust its selectivity and quality of extracts, and enhancement of biological activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747452PMC
http://dx.doi.org/10.3390/plants11010054DOI Listing

Publication Analysis

Top Keywords

scco extraction
12
extraction
9
quality extracts
8
plant material
8
extraction yield
8
enzymatic microwave
4
microwave pretreatments
4
pretreatments supercritical
4
supercritical extraction
4
extraction improving
4

Similar Publications

Since ancient times, many plant species within the genus have been used due to their numerous health benefits, such as antimicrobial, anti-inflammatory, antiseptic, or diuretic activity. While many of the species within this genus were well known and described, All. or Pannonian thyme remains relatively unexplored despite its unique chemical composition and activity.

View Article and Find Full Text PDF

Background: Curcuminoids, the bioactive compounds found in turmeric, exhibit potent antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to enhance the extraction of curcuminoids from turmeric using environmentally friendly solvents supercritical CO (scCO) combined with natural deep eutectic solvents (NADESs) in one process, and to evaluate the resulting biological activity.

Methods: A Box-Behnken statistical design was applied to optimize scCO extraction conditions-pressure, CO volume, and temperature-to maximize curcuminoid yield.

View Article and Find Full Text PDF

Antifungal Properties of Bioactive Compounds Isolated from Supercritical Carbon Dioxide Extract.

Molecules

December 2024

Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany.

The exploration of natural antifungal substances from algal origins is significant due to the increasing resistance of pathogens to conventional antifungal agents and the growing consumer demand for natural products. This manuscript represents the inaugural investigation into the antifungal attributes of bioactive compounds extracted from via supercritical carbon dioxide (scCO) extraction utilizing contemporary countercurrent chromatography (CCC). In aligning with the prospective utilization of this extract within the agricultural sector, this study also serves as the preliminary report demonstrating the capability of scCO extract to enhance the activity of plant resistance enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how enhanced oil recovery using carbon dioxide (CO) alters the properties of crude oil, specifically focusing on wax characteristics and viscosity changes.
  • As the treatment pressure increases from atmospheric levels to higher pressures (up to 25 MPa), notable changes in the composition of crude oil occur, including decreases in light hydrocarbons and increases in paraffins and wax.
  • Treatment with supercritical CO (scCO) leads to smaller wax crystal sizes and increased viscosity, with significant enhancements in gelation characteristics and wax precipitation temperatures, especially notable between pressures of 5 to 15 MPa.
View Article and Find Full Text PDF

Granular activated carbon (GAC) is widely used to treat contaminated per- and polyfluoroalkyl substances (PFAS) waste streams, resulting in the accumulation of large quantities of spent GAC that need to be landfilled or regenerated. A novel modified supercritical CO (scCO) extraction for regeneration of spent GAC is developed. With the addition of organic solvents and acid modifiers, the procedure yielded >99% perfluorooctanoic acid (PFOA) desorption after a 60-min treatment in a continuous flow reactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!