Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers.

Int J Mol Sci

Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece.

Published: December 2021

Mammalian exosomes have emerged as a promising class of functional materials, inspiring novel applications as therapeutic vehicles and nutraceutical compounds. Despite this, their immunogenicity has been an issue of controversy within the scientific community. Although, exosome-like vesicles, innately formed in plants and inherent to eukaryotic cell-derived vesicles, could soothe most of the concerns, they are notably underutilized as therapeutic modalities. This review highlights all efforts published so far, on the use of plant-derived extracellular vesicles (EVs) as therapeutic delivery systems. A summary of the physicochemical characteristics of plant-derived EVs is provided along with their main biological composition and in vitro/in vivo evidence of their therapeutic efficacy provided where available. Despite only a hand full of clinical trials being underway, concerning these vesicles, they arguably possess significant potential as nanodelivery systems of natural origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745116PMC
http://dx.doi.org/10.3390/ijms23010191DOI Listing

Publication Analysis

Top Keywords

plant-derived extracellular
8
extracellular vesicles
8
vesicles
5
therapeutic
5
vesicles therapeutic
4
therapeutic nanocarriers
4
nanocarriers mammalian
4
mammalian exosomes
4
exosomes emerged
4
emerged promising
4

Similar Publications

Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy.

J Control Release

January 2025

Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China. Electronic address:

Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Recent advancements in the field of plant-pathogen interactions have spotlighted the role of extracellular vesicles (EVs) as pivotal mediators of cross-kingdom communication, offering new vistas for enhancing crop protection strategies. EVs are instrumental in the transport of small regulatory RNAs (sRNAs) and other bioactive molecules across species boundaries, thus playing a critical role in the molecular warfare between plants and pathogens. This review elucidates the sophisticated mechanisms by which plants utilize EVs to dispatch sRNAs that silence pathogenic genes, fortifying defenses against microbial threats.

View Article and Find Full Text PDF

Stress protein HSP70 administered exogenously has demonstrated high potential as an efficient adjuvant in antitumor immune response. To enhance the antigen-presenting activity, bioavailability, and stability of exogenous recombinant human HSP70, we propose incorporating it into plant extracellular vesicles. Earlier, we found that grapefruit-derived extracellular vesicles (GEV) were able to store the protein with no loss of its major function, chaperone activity.

View Article and Find Full Text PDF
Article Synopsis
  • Biofilms, which are multicellular bacterial communities embedded in an extracellular matrix, enhance bacterial survival and contribute to severe infections due to their increased antibiotic resistance.
  • Quorum sensing plays a critical role in biofilm production, making it essential to develop new strategies to combat biofilm-related infections, particularly for conditions like post-surgery and wound infections.
  • Plant extracts and purified phytochemicals have shown significant potential in inhibiting biofilm formation and may serve as promising agents in treating infections caused by biofilms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!