Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The scattering of X-ray ultrashort pulses (USPs) is an important aspect of the diffraction analysis of matter using modern USP sources. The theoretical basis, which considers the specifics of the interaction of ultrashort pulses with complex polyatomic structures, is currently not well developed. In general, research is focused on the specifics of the interaction of ultrashort pulses with simple systems-these are atoms and simple molecules. In this work, a theory of scattering of X-ray ultrashort pulses by complex polyatomic structures is developed, considering the specifics of the interaction of ultrashort pulses with such a substance. The obtained expressions have a rather simple analytical form, which allows them to be used in diffraction analysis. As an example, it is shown that the obtained expressions can be used to study the structures of deoxyribonucleic (DNA) and ribonucleic (RNA) acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8745671 | PMC |
http://dx.doi.org/10.3390/ijms23010163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!