Asthma is a disease that consists of three main components: airway inflammation, airway hyperresponsiveness, and airway remodeling. Persistent airway inflammation leads to the destruction and degeneration of normal airway tissues, resulting in thickening of the airway wall, decreased reversibility, and increased airway hyperresponsiveness. The progression of irreversible airway narrowing and the associated increase in airway hyperresponsiveness are major factors in severe asthma. This has led to the identification of effective pharmacological targets and the recognition of several biomarkers that enable a more personalized approach to asthma. However, the efficacies of current antibody therapeutics and biomarkers are still unsatisfactory in clinical practice. The establishment of an ideal phenotype classification that will predict the response of antibody treatment is urgently needed. Here, we review recent advancements in antibody therapeutics and novel findings related to the disease process for severe asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744863PMC
http://dx.doi.org/10.3390/ijms23010083DOI Listing

Publication Analysis

Top Keywords

antibody therapeutics
12
airway hyperresponsiveness
12
airway
9
airway inflammation
8
severe asthma
8
asthma
5
advances challenges
4
antibody
4
challenges antibody
4
therapeutics severe
4

Similar Publications

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.

Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.

View Article and Find Full Text PDF

Expression, purification and characterization of phosphatidylserine-targeting antibodies for biochemical and therapeutic applications.

Methods Cell Biol

January 2025

Department of Microbiology, Biochemistry and Molecular Genetics, (3)Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ, United States. Electronic address:

The externalization of Phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface of the plasma membrane is an emblematic event during apoptosis and serves as a potent "eat-me" signal for the efferocytosis of apoptotic cells. Although less well understood, PS is also externalized on live cells in the tumor microenvironment and on live virus-infected cells whereby it serves as an immune modulatory signal that drives tolerance and immune escape. Given the importance of PS in cancer immunology and immune escape, PS-targeting monoclonal antibodies have been characterized with promising immunotherapeutic potential.

View Article and Find Full Text PDF

This study analyzed the association of romosozumab, a human monoclonal antibody with bone-forming and bone resorption-inhibiting effects, and bisphosphonates with the development of cardiovascular disease among patients with osteoporosis. A new-user design was employed to address selection bias, and instrumental variable analysis was used to address confounding by indication. Japanese patients aged ≥40 years, diagnosed with osteoporosis or experienced a fragility fracture, were admitted to medical facilities covered by a commercial administrative claims database, and newly prescribed romosozumab or bisphosphonates after the commercialization of romosozumab in Japan (March 4, 2019) were included based on verification of a 180-day washout period.

View Article and Find Full Text PDF

Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!