A lucanthone, one of the family of thioxanthenones, has been reported for its inhibitory effects of apurinic endonuclease-1 and autophagy. In this study, we investigated whether lucanthone could enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in various cancer cells. Combined treatment with lucanthone and TRAIL significantly induced apoptosis in human renal carcinoma (Caki and ACHN), prostate carcinoma (PC3), and lung carcinoma (A549) cells. However, combined treatment did not induce apoptosis in normal mouse kidney cells (TCMK-1) and normal human skin fibroblast (HSF). Lucanthone downregulated protein expression of deubiquitinase DUB3, and a decreased expression level of markedly led to enhance TRAIL-induced apoptosis. Ectopic expression of DUB3 inhibited combined treatment with lucanthone and TRAIL-induced apoptosis. Moreover, lucanthone increased expression level of mRNA via downregulation of . Transfection of mimics suppressed the lucanthone-induced DR5 upregulation. Taken together, these results provide the first evidence that lucanthone enhances TRAIL-induced apoptosis through DR5 upregulation by downregulation of and DUB3-dependent Mcl-1 downregulation in human renal carcinoma cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744864 | PMC |
http://dx.doi.org/10.3390/ijms23010017 | DOI Listing |
J Cell Biochem
January 2025
Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
We previously reported that ferroptosis interplays with apoptosis through the integration of two independent pathways: the endoplasmic reticulum (ER) stress signaling pathway and the mitochondria-dependent apoptotic signaling pathway. In this study, we investigated a potential gatekeeper molecule, Mcl-1, between the two signal transduction pathways. Morphology studies and cell death analyses confirmed that a combination treatment of ferroptotic agent erastin (ERA) and apoptotic agent TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) synergistically enhances TRAIL-induced apoptosis in human pancreatic adenocarcinoma BxPC3 and human colorectal carcinoma HCT116 cells.
View Article and Find Full Text PDFOncogene
January 2025
MRC Toxicology Unit, University of Leicester, Leicester, UK.
Exp Cell Res
December 2024
Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin, 132013, Jilin Province, PR China. Electronic address:
Tissue Barriers
December 2024
Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo, Japan.
Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial homeostasis. LSR is highly expressed in well-differentiated cancers, and its expression decreases during malignancy. The LSR antibody inhibits cell growth and promotes apoptosis in some cancers.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!