AI Article Synopsis

  • * A study on mice aged 3, 12, and 17 months revealed that various PTMs and histone modifications increased with age, with specific changes in gene expression linked to ovarian aging.
  • * Findings suggest that alterations in PTMs and the expression of related regulatory enzymes may offer insights into delaying ovarian aging and addressing female infertility issues.

Article Abstract

Post-translational modifications (PTMs) have been confirmed to be involved in multiple female reproductive events, but their role in physiological ovarian aging is far from elucidated. In this study, mice aged 3, 12 or 17 months (3M, 12M, 17M) were selected as physiological ovarian aging models. The expression of female reproductive function-related genes, the global profiles of PTMs, and the level of histone modifications and related regulatory enzymes were examined during physiological ovarian aging in the mice by quantitative real-time PCR and western blot, respectively. The results showed that the global protein expression of Kbhb (lysineβ-hydroxybutyryllysine), Khib (lysine 2-hydroxyisobutyryllysine), Kglu (lysineglutaryllysine), Kmal (lysinemalonyllysine), Ksucc (lysinesuccinyllysine), Kcr (lysinecrotonyllysine), Kbu (lysinebutyryllysine), Kpr (lysinepropionyllysine), SUMO1 (SUMO1 modification), ub (ubiquitination), P-Typ (phosphorylation), and 3-nitro-Tyr (nitro-tyrosine) increased significantly as mice aged. Moreover, the modification level of Kme2 (lysinedi-methyllysine) and Kac (lysineacetyllysine) was the highest in the 3M mice and the lowest in 12M mice. In addition, only trimethylation of histone lysine was up-regulated progressively and significantly with increasing age ( < 0.001), H4 ubiquitination was obviously higher in the 12M and 17M mice than 3M ( < 0.001), whereas the modification of Kpr (lysinepropionylation) and O-GlcNA in 17M was significantly decreased compared with the level in 3M mice ( < 0.05, < 0.01). Furthermore, the expression levels of the TIP60, P300, PRDM9, KMT5B, and KMT5C genes encoding PTM regulators were up-regulated in 17M compared to 3M female mice ( < 0.05). These findings indicate that altered related regulatory enzymes and PTMs are associated with physiological ovarian aging in mice, which is expected to provide useful insights for the delay of ovarian aging and the diagnosis and treatment of female infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744712PMC
http://dx.doi.org/10.3390/ijms23010002DOI Listing

Publication Analysis

Top Keywords

ovarian aging
24
physiological ovarian
20
mice
10
post-translational modifications
8
female reproductive
8
mice aged
8
12m 17m
8
regulatory enzymes
8
aging mice
8
mice 005
8

Similar Publications

The anti-Müllerian hormone (AMH) is a granulosa cell-derived hormone that has been associated with female fertility and reflects the population of growing follicles. This study aimed to evaluate the average concentration of AMH in Lipizzaner mares, as well as to determine the relationship between AMH concentration and follicle number and size. We also investigated the relationship between the age of mares and their AMH levels.

View Article and Find Full Text PDF

The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices.

Biogerontology

January 2025

Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.

Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.

View Article and Find Full Text PDF

Anti-Aging Tests for Middle Aged Women.

J Menopausal Med

December 2024

Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.

The interest in aging and anti-aging research has increased significantly in recent years, leading to rapid expansion in the anti-aging market. Aging is associated with gradual physiological changes and an elevated risk of age-related ailments, and is divided into three categories: usual aging, successful aging, and pathological aging. Each category is associated with distinct implications for health and well-being.

View Article and Find Full Text PDF

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!