Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment.

Cancers (Basel)

Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore.

Published: December 2021

Autophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells. Autophagy-dependent phenotypic changes in the recipient cells further enhance tumor growth and metastasis, through diverse biological processes, including nutrient supplementation, immune evasion, angiogenesis, and therapeutic resistance. In this review, we discuss how the feedforward autophagy-ncRNA axis orchestrates vital communications between various cell types within the TME ecosystem to promote cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750064PMC
http://dx.doi.org/10.3390/cancers14010020DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
12
crosstalk tumor
8
recipient cells
8
tumor
5
autophagy ncrnas
4
ncrnas dangerous
4
dangerous liaisons
4
liaisons crosstalk
4
microenvironment autophagy
4
autophagy fundamental
4

Similar Publications

Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Brain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.

View Article and Find Full Text PDF

Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!