Background: Management of diabetes mellitus-induced erectile dysfunction (DMED) is challenging because of its insufficient responses to phosphodiesterase type 5 inhibitors.

Aim: To compare the effects of ipidacrine, a reversible cholinesterase inhibitor, and sildenafil on DMED in a rat model of streptozotocin (STZ)-induced diabetes.

Methods: Erectile dysfunction (ED) caused by STZ-induced diabetes mellitus was modeled in adult male Wistar rats, which were randomized to 4 groups: untreated diabetic rats, sildenafil (5 mg/kg), ipidacrine (3.6 mg/kg) and ipidacrine (6.7 mg/kg). The test drug (ipidacrine), comparator (sildenafil) or control substance (1% starch solution) were administered orally for 5 days or 14 days. Erectile function was assessed by the change in the maximum intracavernous pressure (ICPmax) following cavernous nerve electrical stimulation. The mean arterial pressure (MAP) was recorded, and the ICPmax/MAP ratio was calculated. Sexual behavior, cholinesterase activity and blood testosterone level tests assessed.

Main Outcome Measure: The quantitative value of ICPmax/MAP 14 days after the start of administration of the test drug and the comparison drug.

Results: Animals with STZ-induced diabetes mellitus showed a significant decrease in ICPmax and ICPmax/MAP ratio compared to the intact control group. When ipidacrine was administered to rats with DMED for 14 days, an increase in these indicators was noted. It was proved that ipidacrine at a dose of 6.7 mg/kg has noninferiority compared to sildenafil on the DMED model. Significant increase in ICPmax compared to STZ-control after electrostimulation of the cavernous nerve was recorded following administration of ipidacrine at a dose of 6.7 mg/kg (P < .05) and sildenafil at a dose 5 mg/kg (P < .05). Neither the test drug, nor the comparator were associated with increase in testosterone levels in blood; as well both drugs did not promote activation of sexual behavior.

Clinical Implications: Ipidacrine may be considered as an effective therapy for DMED but needs to be verified in human investigations.

Strengths & Limitations: The role of ipidacrine, was firstly demonstrated in rats with DMED. However, the results were obtained in animal experiments, and will be further tested in the study of receptor interactions and the determination of cellular targets.

Conclusion: This is the first study to show that administration of ipidacrine, the reversible cholinesterase inhibitor, improved erectile function in diabetic rats and these results may be beneficial in further studies using ipidacrine for treatment of DMED, particularly in non-responders to PDE5 inhibitors. Bykov V, Gushchina E, Morozov S, et al. Ipidacrine (Axamon), A Reversible Cholinesterase Inhibitor, Improves Erectile Function in Male Rats With Diabetes Mellitus-Induced Erectile Dysfunction. Sex Med 2022;10:100477.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847829PMC
http://dx.doi.org/10.1016/j.esxm.2021.100477DOI Listing

Publication Analysis

Top Keywords

reversible cholinesterase
16
cholinesterase inhibitor
16
erectile function
16
erectile dysfunction
16
ipidacrine
13
diabetes mellitus-induced
12
mellitus-induced erectile
12
test drug
12
dose mg/kg
12
ipidacrine axamon
8

Similar Publications

The inhibitory effect of nicotine on Lumbriculus variegatus stereotypical movements and locomotor activity.

Pharmacol Biochem Behav

December 2024

Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales SA2 8PP, United Kingdom.

Nicotine has been shown to induce profound physiological and behavioural responses in invertebrate model organisms such as Caenorhabditis elegans and Drosophila melanogaster. Lumbriculus variegatus is an aquatic oligochaete worm which we have previously demonstrated has application within pharmacological research. Herein, we demonstrate the presence of endogenous acetylcholine and cholinesterase activity within L.

View Article and Find Full Text PDF

Background: Environmental pollution, including exposure to carbon tetrachloride (CCl4), poses serious health risks, particularly through oxidative stress, which may lead to neurodegenerative damage. Antioxidants, especially those found in natural products, show potential in mitigating these toxic effects. Pomegranate juice (PJ), rich in bioactive phytochemicals, has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties.

View Article and Find Full Text PDF

Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400 mg/mL compared to 111 mg/mL in normal controls, indicating hyperglycemia.

View Article and Find Full Text PDF

New conjugates of amiridine and salicylic derivatives (salicylamide, salicylimine, and salicylamine) with different lengths of alkylene spacers were designed, synthesized, and evaluated as potential multifunctional central nervous system therapeutic agents for Alzheimer's disease (AD). Conjugates demonstrated high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition (IC: AChE, 0.265-4.

View Article and Find Full Text PDF

Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!