A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability. | LitMetric

Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability.

J Hazard Mater

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, China.

Published: April 2022

Metal leaching and catalytic stability are the key issues in Fenton-like reaction. Herein, a hollow yolk-shell nanoreactor (HYSCN) with shell confined Co species was fabricated for peroxymonosulfate (PMS) activation to degrade carbamazepine (CBZ). The uniform Co nanoparticles were completely anchored in a hollow void, further confined by a porous N-doped carbon shell. The unique construction significantly reduces Co species leaching in PMS activation and enhances catalytic stability. Co leaching came from HYSCN dropped by almost fourfold compared to CN-8 without shell confined (0.403 mg/L to 0.120 mg/L). The catalytic stability is also greatly improved, confirming the dominant role of heterogeneous catalysis in the HYSCN/PMS system. HYSCN exhibits excellent catalytic performance compared to a solid structure (SCSCN), demonstrating the significance of hollow structures. Mechanism study found that HO, SO and O induced in HYSCN/PMS system and the relative contributions were distinguished and quantified by stoichiometric methods. The UPLC-Q-TOF-MS/MS was used to identify the CBZ degraded intermediate products and the possible degradation pathway was proposed. This study will provide theoretical guidance for reducing metal leaching and improving catalytic stability in the PMS activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.128204DOI Listing

Publication Analysis

Top Keywords

catalytic stability
20
metal leaching
12
pms activation
12
n-doped carbon
8
carbon shell
8
confined species
8
shell confined
8
hyscn/pms system
8
catalytic
6
leaching
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!