Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Topological superconductors have attracted tremendous excitement as they are predicted to host Majorana zero modes that can be utilized for topological quantum computing. Candidate topological superconductor SnInTe thin films (0 < < 0.3) grown by molecular beam epitaxy and strained in the (111) plane are shown to host quantum interference effects in the conductivity coexisting with superconducting fluctuations above the critical temperature . An analysis of the normal state magnetoresistance reveals these effects. A crossover from weak antilocalization to localization is consistently observed in superconducting samples, indicating that superconductivity originates dominantly from charge carriers occupying trivial states that may be strongly spin-orbit split. A large enhancement of the conductivity is observed above , indicating the presence of superconducting fluctuations. Our results motivate a re-examination of the debated pairing symmetry of this material when subjected to quantum confinement and lattice strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c04370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!