Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Decellularized peripheral nerve matrix hydrogel (DNM-G) has drawn increasing attention in the field of neural tissue engineering, owing to its high tissue-specific bioactivity, drug/cell delivery capability, and multifunctional processability. However, the mechanisms and influencing factors of DNM-G formation have been rarely reported. To enable potential biological applications, the relationship between gelation conditions (including digestion time and gel concentration) and mechanical properties/stability (sol-gel transition temperature, gelation time, nanotopology, and storage modulus) of the DNM-G were systematically investigated in this study. The adequate-digested decellularized nerve matrix solution exhibited higher mechanical property, shorter gelation time, and a lower gelation temperature. A noteworthy increase of β-sheet proportion was identified through Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD) characterizations, which suggested the possible major secondary structure formation during the phase transition. Besides, the DNM-G degraded fast that over 70% mass loss was noted after 4 weeks when immersing in PBS. A natural cross-linking agent, genipin, was gently introduced into DNM-G to enhance its mechanical properties and stability without changing its microstructure and biological performance. As a prefabricated scaffold, DNM-G remarkably increased the length and penetration depth of dorsal root ganglion (DRG) neurites compared to collagen gel. Furthermore, the DNM-G promoted the myelination and facilitated the formation of the morphological neural network. Finally, we demonstrated the feasibility of applying DNM-G in support-free extrusion-based 3D printing. Overall, the mechanical and biological performance of DNM-G can be manipulated by tuning the processing parameters, which is key to the versatile applications of DNM-G in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.1c00616 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!