A microphysiological system (MPS) is recently emerging as a promising alternative to the classical preclinical models, especially animal testing. A key factor for the construction of MPS is to provide a biomimetic three-dimensional (3D) cellular microenvironment. However, it still remains a challenge to introduce extracellular matrix (ECM)-like biomaterials such as hydrogels and nanofibers in a precise and spatiotemporal manner. Herein, we report a strategy to fabricate a MPS combining both electrospun nanofibers and hydrogels. The in situ formation of microsized hydrogel (microgel) array in MPS is realized by patterning electrospun poly(l-lactic acid) (PLLA)/Ca nanofibers via a solvent-loaded agarose stamp and injecting an alginate solution to trigger the quick ionic cross-linking between alginate and Ca released from patterned nanofibers. The one-on-one integration of electrospun nanofibers and microgels not only provides a 3D cellular microenvironment in designated regions in MPS but also improves the stability of these microenvironments under dynamic culture. In addition, due to the biocompatible properties of an ionic cross-linking reaction, patterned cell array can be achieved simultaneously during the microgel formation process. A breast cancer model is then built in MPS by coculturing human breast cancer cells and human fibroblasts in microgel array, and its application in drug (cisplatin) testing is evaluated. Our data prove that MPS-MA offers a more precise platform for drug testing to evaluate the drug concentration, duration time, cancer microenvironment, etc, mainly due to its successful construction of the biomimetic 3D cellular microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00534DOI Listing

Publication Analysis

Top Keywords

microgel array
12
electrospun nanofibers
12
cellular microenvironment
12
situ formation
8
drug testing
8
microphysiological system
8
ionic cross-linking
8
breast cancer
8
nanofibers
6
mps
6

Similar Publications

Article Synopsis
  • * A new method using a digital micro-mirror device allows for high-throughput and cost-effective production of colored microparticles, increasing the encoding capacity of barcodes significantly.
  • * This technique enables the creation of large-scale microgel arrays with multiple colors for secure data storage and anti-counterfeiting measures, and it can produce detailed images quickly, in under 30 minutes.
View Article and Find Full Text PDF

Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review.

Int J Biol Macromol

September 2024

Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran. Electronic address:

Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety.

View Article and Find Full Text PDF

Passive Droplet Microfluidic Platform for High-Throughput Screening of Microbial Proteolytic Activity.

Anal Chem

October 2024

Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.

Traditional bacterial isolation methods are often costly, have limited throughput, and may not accurately reflect the true microbial community composition. Consequently, identifying rare or slow-growing taxa becomes challenging. Over the past decade, a new approach has been proposed to replace traditional flasks or multiwell plates with ultrahigh-throughput droplet microfluidic screening assays.

View Article and Find Full Text PDF

Hydrogels have emerged as prototypical stimuli-responsive materials with potential applications in soft robotics, microfluidics, tissue engineering, and adaptive optics. To leverage the full potential of these materials, fabrication techniques capable of simultaneous control of microstructure, device architecture, and interfacial stability, i.e.

View Article and Find Full Text PDF

Despite the substantial advancement in developing various hydrogel microparticle (HMP) synthesis methods, emulsification through porous medium to synthesize functional hybrid protein-polymer HMPs has yet to be addressed. Here, the aided porous medium emulsification for hydrogel microparticle synthesis (APME-HMS) system, an innovative approach drawing inspiration from porous medium emulsification is introduced. This method capitalizes on emulsifying immiscible phases within a 3D porous structure for optimal HMP production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!