Cell Trapping via Migratory Inhibition within Density-Tuned Electrospun Nanofibers.

ACS Appl Bio Mater

Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan.

Published: October 2021

Cell migration is an essential bioprocess that occurs during wound healing and tissue regeneration. Abnormal cell migration is observed in various pathologies, including cancer metastasis. Glioblastoma multiforme (GBM) is an aggressive and highly infiltrative brain tumor. The white matter tracts are considered the preferred routes for GBM invasion and the subsequent spread throughout the brain tissue. In the present study, a platform based on electrospun nanofibers with a consistent alignment and controlled density was designed to inhibit cell migration. The observation of the cells cultured on the nanofibers with different fiber densities revealed an inverse correlation between the cell migration velocity and nanofiber density. This was attributed to the formation of focal adhesions (FAs). The FAs in the sparse fiber matrix were small, whereas those in the dense fiber matrix were large, aligned with the nanofibers, and distributed throughout the cells. A nanofiber-based platform with stepwise different fiber densities was designed based on the aforementioned observation. A time-lapse observation of the GBM cells cultured on the platform revealed a directional one-way migration that induced the entrapment of cells in the dense-fiber zone. The designed platform mimicked the structure of the white matter tracts and enabled the entrapment of migrating cells. The demonstrated approach is suitable for inhibiting metastasis and understanding the biology of invasion, thereby functioning as a promising therapeutic strategy for GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00700DOI Listing

Publication Analysis

Top Keywords

cell migration
16
electrospun nanofibers
8
white matter
8
matter tracts
8
cells cultured
8
fiber densities
8
fiber matrix
8
cell
5
migration
5
cells
5

Similar Publications

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.

View Article and Find Full Text PDF

Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells.

BMC Complement Med Ther

January 2025

Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.

Background: Plant flavonoids such as quercetin are useful for both the therapeutic and preventive care of a variety of illnesses. Nevertheless, their antitumor efficacy against KON oral cancer is still unknown. Therefore, the aim of this investigation was to examine quercetin's anti-growth, anti-migrative, and anti-invasive characteristics.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

Objective: The effect of coiled-coil domain-containing 154 (CCDC154) in liver cancer (LC) remains unexplored. The objective of this study was to investigate the role of CCDC154 in LC and its underlying mechanism.

Methods: The analysis of CCDC154 expression and prognosis was performed using UALCAN, Human Protein Atlas and Kaplan-Meier plotter websites.

View Article and Find Full Text PDF

Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.

Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!