A comprehensive study was conducted on the characteristics of oxygen-controlled carbonization process of sewage sludge (SS) using thermogravimetric analysis and lab-scale carbonization experiment. Reaction temperature of SS carbonization was varied between 250 and 650 °C in carrier gas with different O contents. The thermal process of SS in low oxygen could be divided into three stages: dehydration (below 160 °C), devolatilization (160-380 °C), stubborn volatile decomposition and fixed carbon combustion (380-600 °C). Based on Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods, the reaction activation energy (E) of SS carbonization process in 10% O was the lowest, with values of 98.50 kJ mol (KAS) and 103.49 kJ mol (FWO). The properties of the obtained char, tar, and gas products were analyzed by FTIR and GC-MS. With the increase of carbonization temperature, char yield decreased and gas yield increased. The highest yield of tar was 27.76% (N) and 27.04% (10% O) at 450 °C. Low-oxygen atmosphere at the same temperature did not change the yield of char but increased the fixed carbon content and its aromaticity. Oxygen would participate in secondary cracking in tar and promote gas generation above 350 °C. It was found that the presence of oxygen not only increased the concentration of H, CO, and CH in gas product, but also improved the quality of tar in terms of high aromatic content and low nitrogen-containing compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-18510-w | DOI Listing |
BMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, 310021, China.
Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Promoting soil structure is considered an essential prerequisite for abandoned mine land restoration. Sewage sludge (SS) has the potential to improve soil structure. However, traditional SS application to improve soil structure requires a lot of SS, potentially exacerbating heavy metal (HM) contamination.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada. Electronic address:
Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas. Campinas, Brazil.
The expansion of urban settlements over native environments may expose biodiversity to a host of emerging contaminants, with unintended ecological effects. This study evaluated patterns of contamination of streamwater by antidepressants in the Upper Tietê River Basin, a watershed of high social, economic and environmental relevance for comprising both the largest urban settlement in South America (the Metropolitan Region of São Paulo) and remnants of a globally important biodiversity hotspot (the Atlantic Rainforest). We sampled 53 third-order streams draining catchments regularly distributed across a gradient in urban cover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!