Latex paints are widely used, and many researchers pointed out that the film formation process depends on the deformability of dispersed polymer particles. However, the relationship between the film formation process and drying rate has not been totally understood due to the lack of accurate data on drying rate throughout the drying process. In the present study, we measured the drying rate of latex coating by the temperature change method proposed by Imakoma in convective drying. We revealed that the drying process significantly depends on particle deformability, especially in the former stage of the falling drying rate period. At a low drying temperature, the close-packed structure of polymer particles is formed throughout the film at the end of the constant drying rate period. On the other hand, partially deformed soft particles due to wet sintering inhibit the drying rate even under high moisture content at high drying temperatures. In either case, after forming the closest-packed structure, the shrinkage of the gap space between particles due to capillary deformation decreases the drying rate, proportional to the moisture content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/s10189-021-00155-1 | DOI Listing |
J Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States.
In 2020, nearly 3 million scientific and engineering papers were published worldwide (White, K. Publications Output: U.S.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
China Astronaut Research and Training center, Beijing 100094, PR China.
In order to explore the management and treatment methods of solid waste in the Controlled Ecological Life Support System (CELSS) of future lunar bases, during the 4-crew 180-day integrated experiment, the Solid Waste Management and Treatment System (SWMTS) was built, in which the treatment of recyclable solid waste such as inedible plant parts and human excrement was completed through a combination of biological aerobic composting and high-temperature oxidation. Basic data on the types and amounts of solid waste generated during the 4-crew 180-day experiment mission were obtained. There were six types of solid wastes, including the work support wastes, the household support wastes, the plant cultivation wastes, the plant-based wastes, and crew feces.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
This paper aims to address the challenge of precise robotic grasping of molecular sieve drying bags during automated packaging by proposing a six-dimensional (6D) pose estimation method based on an red green blue-depth (RGB-D) camera. The method consists of three components: point cloud pre-segmentation, target extraction, and pose estimation. A minimum bounding box-based pre-segmentation method was designed to minimize the impact of packaging wrinkles and skirt curling.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
In this paper, the early drying shrinkage coefficients of different hydraulic cement mortars are calibrated through laboratory experiments for moderate-heat Portland cement (MHPC) and low-heat Portland cement (LHPC). By developing an improved mesoscale modeling approach, a 3D highly detailed simulation of concrete was generated, which incorporates the phases of mortar, aggregates, and interfacial transition zone (ITZ). The simulation result is in good agreement with the concrete early drying shrinkage experiment, exhibiting an error of less than 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!