Objective: To evaluate the physical-chemical (weight, pH, quantification of hydrogen peroxide) and mechanical (texture profile and rheology tests) properties of the experimental bleaching gel based on the bioadhesive polymer Aristoflex® AVC, after accelerated stability testing.

Materials And Methods: A total of 300 syringes of bleaching gels were divided into 5 groups (n = 60): Whiteness Perfect® 10%-FGM (WP); carbamide peroxide 10% with aristoflex (CPa); carbamide peroxide 10% with Carbopol (CPc); aristoflex thickener (A); and Carbopol thickener (C). According to the following requirements and time, the accelerated stability test was performed: in an incubator at 40 °C and 75% humidity per 1, 3, and 6 months, and baseline (refrigerator at 5 °C and 25% humidity). The variables were analyzed following the statistical tests: Two-way ANOVA and Tukey's test were applied to pH; weight data were analyzed using a mixed model for repeated measurements over time and the Tukey-Kramer test; one-way ANOVA and Tukey's test analyzed the rheology test; generalized linear models were used to quantify the peroxide amount and texture profile data. A significance level of 5% was considered.

Results: The experimental bleaches CPa and CPc had the highest pH values when compared to the others in 6 months. Thickeners A and C did not change the pH, weight, and active content over the accelerated stability times (p > 0.05). Furthermore, there was weight loss after 3 months of storage for CPa and CPc (p < 0.05). In the quantification of hydrogen peroxide, the WP group showed the highest values over time (p < 0.0001), only showing a significant loss after the 3rd month. Meanwhile, CPa and CPc showed a reduction in quantification from the 1st month.

Conclusions: Temperature and humidity directly influenced the active content and properties of bleaching gels. In addition, the presence of components regardless of thickeners, such as stabilizers, in the commercial gel allowed for greater stability over time.

Clinical Relevance: The development of experimental bleaching gels for clinical use requires careful testing. Therefore, accelerated stability testing represents a valuable tool in the development and evaluation of cosmetic formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-021-04308-6DOI Listing

Publication Analysis

Top Keywords

accelerated stability
16
properties experimental
8
experimental bleaching
8
bleaching gels
8
texture profile
8
carbamide peroxide
8
peroxide 10%
8
anova tukey's
8
tukey's test
8
cpa cpc
8

Similar Publications

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

To enhance high-frequency perceptual information and texture details in remote sensing images and address the challenges of super-resolution reconstruction algorithms during training, particularly the issue of missing details, this paper proposes an improved remote sensing image super-resolution reconstruction model. The generator network of the model employs multi-scale convolutional kernels to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse these features, significantly improving the ability to capture both fine details and global information in remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, which processes features at different resolutions progressively, from low resolution to high resolution, substantially enhancing reconstruction quality and detail recovery.

View Article and Find Full Text PDF

Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies.

Pharm Res

January 2025

BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.

Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.

Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.

View Article and Find Full Text PDF

Manganese Intercalation Enabling High-Performance Aqueous Fe-VO Batteries.

ACS Appl Mater Interfaces

January 2025

College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.

The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO nanosheets by introducing Mn ion intercalation as a cathode material to enhance their performance in AIIBs.

View Article and Find Full Text PDF

The effect of adding a tocopherol-rich natural extract (TNE) at 0.1 % and 0.5 % on sunflower oil stability under frying and accelerated storage conditions was studied using H NMR and DI-SPME-GC/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!