Nowadays, diabetic chronic wounds impose a heavy burden on patients and the medical system. Persistent inflammation and poor tissue remodeling severely limit the healing of chronic wounds. For these issues, the first recombinant humanized collagen type III (rhCol III) and naproxen (Nap) loaded poly(lactic--glycolic acid) (PLGA) nanoparticle incorporated hyaluronic acid (HA) microneedle (MN) was fabricated for diabetic chronic wound therapy. As the tailored rhCol III was synthesized based on the Gly483-Pro512 segment, which contained the highly adhesive fragments (GER, GEK) in the human collagen type III sequence, it possessed strong cell adhesion. The mechanical strength of the prepared MN was enough to overcome the tissue barrier of necrosis/hyperkeratosis in a minimally invasive way after being applied in wounds. Subsequently, rhCol III and Nap@PLGA nanoparticles were rapidly released to the wound site within a few minutes. The prepared MN possessed favourable biocompatibility and could effectively facilitate the proliferation and migration of fibroblasts and endothelial cells. Furthermore, the regenerative efficacy of the MN was evaluated using the diabetic rat full-thickness skin wound model. These results illustrated that the prepared MN could accelerate wound closure by reducing the inflammatory response and enhancing angiogenesis or collagen deposition, indicating their significant application value in wound dressings for chronic wound repair.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr07708bDOI Listing

Publication Analysis

Top Keywords

collagen type
12
type iii
12
chronic wound
12
rhcol iii
12
recombinant humanized
8
humanized collagen
8
diabetic chronic
8
chronic wounds
8
wound
7
iii
6

Similar Publications

Functional Characteristics of the Crosstalk Between Vocal Fold Fibroblasts and Macrophages-The Role of Vibration in Vocal Fold Inflammation.

J Voice

January 2025

Division of Phoniatrics, ENT University Hospital Graz, Medical University of Graz, Graz, Austria; Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria.

Article Synopsis
  • The study explored how human vocal fold fibroblasts (hVFF) interact with macrophages in the presence of cigarette smoke extract (CSE) and vibration, focusing on vocal fold inflammation.
  • Researchers cultured hVFF with CSE, applying either static or dynamic conditions, and then measured various mRNA and protein levels to assess inflammation.
  • Findings revealed that vibration may reduce CSE-induced inflammatory responses in hVFF, suggesting potential mechanisms to address voice disorders linked to smoking-related inflammation.
View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Aortic valve leaflet assessment to inform novel bioinspired materials: Understanding the impact of collagen fibres on the tissue's mechanical behaviour.

J Mech Behav Biomed Mater

December 2024

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:

Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.

View Article and Find Full Text PDF

The combination of alcohol and a low-carbohydrate, high-protein, high-fat atherogenic diet (AD) increases the risk of lethal arrhythmias in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice with metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates whether left ventricular (LV) myocardial interstitial fibrosis (MIF), formed during the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributes to this increased risk. Male AL mice were fed an AD with or without ethanol for 16 weeks, while age-matched AL and wild-type mice served as controls.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!