Severity: Warning
Message: file_get_contents(https://...@glu-tsc+nps&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The opportunistic pathogen, , uses different mechanisms as well as biofilm production to acquire antibiotic resistance. The polysaccharide synthesis locus () genes play an important role in biofilm formation. Therefore, targeting the expression of genes can be a suitable strategy to prevent the formation of biofilms by antibiotic-resistant strains. Today, advances in nanotechnology provide a novel potential strategy to combat antibiotic-resistant bacteria. In this study, the silver nanoparticles (Ag NPs) synthesized using a chemical co-precipitation method and, after conjugation with thiosemicarbazide, their effect on the biofilm-forming ability are studied in isolates. Chemical properties of synthesized nanoparticles were determined by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, and energy dispersive X-ray spectroscopy. The results confirmed the spherical/cubic morphology, solution stability, and good dispersion of Ag@Glu-TSC NPs with an average size of 40-60 nm. In addition, minimum inhibitory concentration values of functionalized Ag NPs were at least twofold lower than the Ag NPs (alone). The quantitative PCR data analysis showed a decrease in the expression of the gene in the presence of Ag@Glu-TSC NPs, up to 60%, which was associated with a reduction of biofilm formation compared to control. In conclusion, the Ag@Glu-TSC NPs can be considered a new inhibitor of biofilm production in antibiotic-resistant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mdr.2020.0557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!