Immunogenic cell death (ICD) is a key factor for generating antitumor immunity. Endoplasmic reticulum (ER) stress triggers the release of damage-associated molecular patterns (DAMPs), thus inducing immunogenicity. We developed a polypeptide-based K ionophore that perturbed ion homeostasis and elicited a prolonged ER stress. The ER stress not only fosters an oxidative environment that activates mitochondria-dependent apoptosis pathways but also drives immune responses by releasing DAMPs. The ionophore suppressed tumor proliferation in vitro and in vivo based on the pro-apoptotic activity and immunogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00861DOI Listing

Publication Analysis

Top Keywords

polypeptide-based ionophore
8
immunogenic cell
8
cell death
8
ionophore strong
4
strong immunogenic
4
death inducer
4
inducer cancer
4
cancer immunotherapy
4
immunotherapy immunogenic
4
death icd
4

Similar Publications

Polypeptide-Based Copper Ionophore for In Situ Glutathione-Triggered Chemodynamic and Chemotherapy.

Mol Pharm

November 2024

Hebei Key Laboratory of Functional Polymers, Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

Intracellular copper ion homeostasis has become an attractive target for cancer therapy. Herein, we report a 2,2'-dipicolylamine (DPA) functionalized polyglutamate derivative (PDHB) which is capable of rapidly forming PDHB-copper complex (PDHB@Cu) due to the strong coordination ability of pendant DPA with Cu. High drug loading content of doxorubicin (DOX) (>30 wt %) is realized due to the strong affinity of Cu to DOX, while that is about 10 wt % for PDHB without Cu.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) is a key factor for generating antitumor immunity. Endoplasmic reticulum (ER) stress triggers the release of damage-associated molecular patterns (DAMPs), thus inducing immunogenicity. We developed a polypeptide-based K ionophore that perturbed ion homeostasis and elicited a prolonged ER stress.

View Article and Find Full Text PDF

Perturbation of potassium homeostasis can affect various cell functions and lead to the onset of programmed cell death. Although ionophores have been intensively used as an ion homeostasis disturber, the mechanisms of cell death are unclear and the bioapplicability is limited. In this study, helical polypeptide-based potassium ionophores are developed to induce endoplasmic reticulum (ER) stress-mediated apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!