GaInP has shown promise as the wide bandgap top junction in tandem absorber photoelectrochemical (PEC) water splitting devices. Among previously reported dual-junction PEC devices with a GaInP top cell, those with the highest performance incorporate an AlInP window layer (WL) to reduce surface recombination and a thin GaInP capping layer (CL) to protect the WL from corrosion in electrolytes. However, the stability of these III-V systems is limited, and durability continues to be a major challenge broadly in the field of PEC water splitting. This work provides a systematic investigation into the durability of GaInP systems, examining the impacts of the window layer and capping layer among single junction pn-GaInP photocathodes coated with an MoS catalytic and protective layer. The photocathode with both a CL and WL demonstrates the highest PEC performance and longest lifetime, producing a significant current for >125 h. In situ optical imaging and post-test characterization illustrate the progression of macroscopic degradation and chemical state. The surface architecture combining an MoS catalyst, CL, and WL can be translated to dual-junction PEC devices with GaInP or other III-V top junctions to enable more efficient and stable PEC systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c18938 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.
View Article and Find Full Text PDFGels
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.
Heterogeneous photoelectrocatalysis systems have recently seen significant growth in organic transformations, but are limited by the inherent physicochemical properties of electrode materials. To enhance selectivity in these processes, we propose an innovative advancement in the rational design of photoanodes. Specifically, we incorporated cobalt porphyrin co-catalysts with confined Co sites onto bismuth vanadate films as a photoanode.
View Article and Find Full Text PDFWater Res
December 2024
Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; SWING - Department of Built Environment, Oslo Metropolitan Uni., St Olavs Plass, Oslo 0130, Norway. Electronic address:
Urban water systems receive and emit antimicrobial chemicals, resistant bacterial strains, and resistance genes (ARGs), thus representing "antimicrobial hotspots". Currently, regional environmental risk assessment (ERA) is carried out using drug consumption data and threshold concentrations derived based on chemical-specific minimum inhibitory concentration values. A legislative proposal by the European Commission released in 2022 addresses the need to include selected ARGs besides the chemical concentration-based ERAs.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Science, Minzu University of China, Beijing 100081, China; School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China; Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province, Guizhou Normal University, Guiyang 550025, China. Electronic address:
Achieving simultaneous enhancement in the light energy utilization efficiency, bulk charge carrier separation and surface charge carrier injection efficiency as well as the surface reaction kinetics of water oxidation is a formidable challenge for photoanodes in photoelectrochemical (PEC) water splitting hydrogen generation. Herein, nanoparticle-assembled flower-like CdS spheres and nonmetallic plasmonic TiN nanoparticles are exploited to successively sensitize FeVO nanoporous film (NPF) photoanode for achieving efficient PEC hydrogen evolution. The sensitization of TiN and CdS simultaneously integrates type-II band structure, surface plasmon resonance and Schottky junction into FeVO NPF photoanode, synergistically achieving simultaneous enhancement in the light energy utilization efficiency, bulk charge carrier separation efficiency, surface reaction kinetics of water oxidation and surface charge carrier injection efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!