Molecular Determinants of Carbocation Cyclisation in Bacterial Monoterpene Synthases.

Chembiochem

Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Published: March 2022

Monoterpene synthases are often promiscuous enzymes, yielding product mixtures rather than pure compounds due to the nature of the branched reaction mechanism involving reactive carbocations. Two previously identified bacterial monoterpene synthases, a linalool synthase (bLinS) and a cineole synthase (bCinS), produce nearly pure linalool and cineole from geranyl diphosphate, respectively. We used a combined experimental and computational approach to identify critical residues involved in bacterial monoterpenoid synthesis. Phe77 is essential for bCinS activity, guiding the linear carbocation intermediate towards the formation of the cyclic α-terpinyl intermediate; removal of the aromatic ring results in variants that produce acyclic products only. Computational chemistry confirmed the importance of Phe77 in carbocation stabilisation. Phe74, Phe78 and Phe179 are involved in maintaining the active site shape in bCinS without a specific role for the aromatic ring. Phe295 in bLinS, and the equivalent Ala301 in bCinS, are essential for linalool and cineole formation, respectively. Where Phe295 places steric constraints on the carbocation intermediates, Ala301 is essential for bCinS initial cyclisation and activity. Our multidisciplinary approach gives unique insights into how carefully placed amino acid residues in the active site can direct carbocations down specific paths, by placing steric constraints or offering stabilisation via cation-π interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303655PMC
http://dx.doi.org/10.1002/cbic.202100688DOI Listing

Publication Analysis

Top Keywords

monoterpene synthases
12
bacterial monoterpene
8
linalool cineole
8
essential bcins
8
aromatic ring
8
active site
8
steric constraints
8
bcins
5
molecular determinants
4
carbocation
4

Similar Publications

Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades.

J Biol Chem

December 2024

Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.

The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the poly-cyclic sterol triterpenoids. In particular, as these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases.

View Article and Find Full Text PDF

Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in () and (), and the corresponding enzymes were determined to share a sequence identity of 95%.

View Article and Find Full Text PDF

Insects employ terpenoids for communication both within and between species. While terpene synthases derived from isoprenyl diphosphate synthase have been shown to catalyze terpenoid biosynthesis in some insects, canonical terpene synthases (TPS) commonly found in plants, fungi, and bacteria were previously unidentified in insects. This study reveals the presence of genes in insects, likely originating via horizontal gene transfer from noninsect arthropods.

View Article and Find Full Text PDF

This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!