Micelle Formation inside Zeolites: A Critical Step in Zeolite Surfactant-Templating Observed by Raman Microspectroscopy.

ACS Mater Lett

Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica Universidad de Alicante, Ctra. San Vicente-Alicante s/n, Alicante E-03690, Spain.

Published: January 2022

Micelle formation inside faujasite (FAU) zeolite, a critical step in the introduction of mesoporosity in zeolites by surfactant templating, has been confirmed by both C NMR and Raman spectroscopy. Here we provide unambiguous evidence of the incorporation of surfactant molecules inside zeolites during the first step of the surfactant-templating process followed by their self-assembly into micelles after hydrothermal treatment. The homogeneous presence of these micelles throughout zeolite crystals has been directly observed by Raman microspectroscopy, confirming the uniform incorporation of mesoporosity in zeolites by surfactant templating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729504PMC
http://dx.doi.org/10.1021/acsmaterialslett.1c00514DOI Listing

Publication Analysis

Top Keywords

micelle formation
8
formation inside
8
inside zeolites
8
critical step
8
observed raman
8
raman microspectroscopy
8
mesoporosity zeolites
8
zeolites surfactant
8
surfactant templating
8
zeolites
4

Similar Publications

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Background: Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD), and more abundant in intracellular vs. extracellular compartments. However, current immunotherapies are slow and ineffective at clearing intracellular tau aggregates.

View Article and Find Full Text PDF

Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.

Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the surface properties and electrical conductivity of betaine-based ionic liquids change when mixed with different concentrations of gabapentin at a specific temperature.
  • The findings show that as gabapentin concentration and the length of the alkyl chain increase, surface tension decreases, indicating stronger interactions.
  • Additionally, micellization parameters improve with longer chains, while conductivity decreases at higher gabapentin concentrations due to increased viscosity and ion interactions.
View Article and Find Full Text PDF

Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!