Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lower energy consumption for producing feed pellets is an important part of the economy in the feed mill. The same is if physical pellet quality is degraded. The interest in using of novel ingredients is increasing due to requirements for the sustainable development goals. Defatted microalgae as by-product from biodiesel production is one of many novel ingredients. The purpose of this experiment was to understand how the addition of small amount of enzymes can reduce the flow resistance in the die during pellet discharge, without affecting the physical quality of pellets. Thus, possibly reduce the total consumption of electrical energy during compaction. Three enzymes, phytase, protease, xylanase, and combinations of those were added to defatted microalgae at 3 inclusion levels. Feed enzymes xylanase and phytase helped lowering the flow resistance of the material in the die. Reduction of flow resistance was in average 17 times lover when all three levels of enzyme phytase were used. The same was observed when 0.01% xylanase was added. All feed enzymes and their combination have evidently lowered underwater pellet swelling due to their hydrolytic activity at the surface of the microalgal particles. The hydrolytic activities of the feed enzymes did not affect hardness of the microalgal pellets. Contact angle degree between pellet surface and oil droplet was lowered when xylanase and protease was used at all three dosage levels. However, contact angle degree between pellet surface and water droplets was unaffected by the hydrolytic activity of enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715177 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!