A Simple Method for Quantification of Cells on Carriers.

Bio Protoc

Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.

Published: December 2021

The technology of cell carriers was developed as a response to the need for high cell density to enable higher production levels in cell-based production processes. To follow the production process, quantifying the number of cells on these carriers is required, as well as tracking their viability and proliferation. However, owing to various carriers' unique structures, tracking the cells is challenging using current traditional assays that were originally developed for monolayers of adherent cells. The current "gold standard" method is counting cell nuclei, which is tedious and counts both live and dead cells. A few other techniques have been developed, but they are all specific to a carrier type and involve specialized equipment. Here, we describe a broad ranging method for counting cells on carriers. The method is based on the Alamar blue dye, a well-known, common marker for cell activity. No separation of the cells from the carriers is needed, nor is any specialized equipment. The method is simple and rapid, and provides comprehensive details necessary for control of production processes in cells. This method can be easily implemented in any cell-based process and other unique platforms for measuring growth of cells. Graphic abstract: Schematic of the quantification method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678911PMC
http://dx.doi.org/10.21769/BioProtoc.4254DOI Listing

Publication Analysis

Top Keywords

cells carriers
16
cells
9
production processes
8
method counting
8
specialized equipment
8
method
6
carriers
5
simple method
4
method quantification
4
quantification cells
4

Similar Publications

DYRK1A-TGF-β signaling axis determines sensitivity to OXPHOS inhibition in hepatocellular carcinoma.

Dev Cell

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. This study aims to explore the potential mechanisms by which solute carrier family 7 member 11 (SLC7A11) influences RA development.

Methods: Collagen-induced arthritis (CIA) mice were constructed to observe disease onset and pathological scores.

View Article and Find Full Text PDF

pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer.

Bioorg Chem

January 2025

Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland. Electronic address:

Novel pH-sensitive polymeric photosensitizer carriers from the phthalocyanine (Pc) group were investigated as potential photodynamic therapy drugs for the treatment of breast cancer. Their high antiproliferative activity was confirmed by photocytotoxicity studies, which indicated their high efficacy and specificity toward the SK-BR-3 cell line. Importantly, the Pcs encapsulated in the polymeric nanoparticle (NP) carrier exhibited a much better penetration into the acidic environment of tumor cells than their free form.

View Article and Find Full Text PDF

Background: The mitochondrial pyruvate carrier (MPC), a central metabolic conduit linking glycolysis and mitochondrial metabolism, is instrumental in energy production. However, the role of the MPC in cancer is controversial. In particular, the importance of the MPC in glioblastoma (GBM) disease progression following standard temozolomide (TMZ) and radiation therapy (RT) remains unexplored.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!