AI Article Synopsis

  • Cell lines and animal models have historically helped in understanding cancer biology and drug discovery, but they often fall short in replicating the complexity of human tumors and their interactions with the body.
  • Emerging human 3D cell culture technologies, particularly patient-derived organoids (PDOs), offer a promising alternative that maintains the unique features of human cancers while supporting extensive research possibilities.
  • PDO platforms allow for higher success rates in cancer research and can be adapted for various studies, including drug discovery and immune response, making them a valuable tool for understanding tumor behavior in a more human-relevant context.

Article Abstract

For many years, cell lines and animal models have been essential to improve our understanding of the basis of cell metabolism, signaling, and genetics. They also provided an essential boost to cancer drug discovery. Nevertheless, these model systems failed to reproduce the tumor heterogeneity and the complex biological interactions between cancer cells and human hosts, making a high priority search for alternative methods that are able to export results from model systems to humans, which has become a major bottleneck in the drug development. The emergent human 3D cell culture technologies have attracted widespread attention because they seem to have the potential to overcome these limitations. Organoids are unique 3D culture models with the ability to self-organize in contained structures. Their versatility has offered an exceptional window of opportunity to approach human cancers. Pancreatic cancers (PCs) patient-derived-organoids (PDOs) preserve histological, genomic, and molecular features of neoplasms they originate from and therefore retain their heterogeneity. Patient-derived organoids can be established with a high success rate from minimal tissue core specimens acquired with endoscopic-ultrasound-guided techniques and assembled into platforms, representing tens to hundreds of cancers each conserving specific features, expanding the types of patient samples that can be propagated and analyzed in the laboratory. Because of their nature, PDO platforms are multipurpose systems that can be easily adapted in co-culture settings to perform a wide spectrum of studies, ranging from drug discovery to immune response evaluation to tumor-stroma interaction. This possibility to increase the complexity of organoids creating a hybrid culture with non-epithelial cells increases the interest in organoid-based platforms giving a pragmatic way to deeply study biological interactions . In this view, implementing organoid models in co-clinical trials to compare drug responses may represent the next step toward even more personalized medicine. In the present review, we discuss how PDO platforms are shaping modern-day oncology aiding to unravel the most complex aspects of PC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733292PMC
http://dx.doi.org/10.3389/fmed.2021.793144DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
model systems
8
biological interactions
8
pdo platforms
8
platforms
5
pancreatic cancer
4
cancer patient-derived
4
patient-derived organoid
4
organoid platforms
4
platforms clinical
4

Similar Publications

Anti-Mycobacterial Activity of Bacterial Topoisomerase Inhibitors with Dioxygenated Linkers.

ACS Infect Dis

January 2025

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!