Researchers often focus on the mechanisms of synergistic agents, a few explore drug combinations that enhance toxicity, while few have studied the internal mechanism of compatibility enhancement in chemical level. Herein, we present a comprehensive analysis based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and a self-assembled supramolecular strategy, which reveals the toxicity-enhancing essence of glycyrrhizic acid originated in licorice when combined with . Through this method, we discovered the toxicity was enhanced through the formation of a supramolecular complex from /glycyrrhizic acid. The morphology and size distribution of the self-assembled nanoparticles were characterized by scanning electron microscopy and dynamic light scattering Furthermore, a total of 58 constituents (eight diterpenoids, 35 flavonoids, five phenylpropanoids, four nucleosides, two amino acids, and four other compounds) consisted from the supramolecular complex were identified through accurate-mass measurements in full-scan MS/data-dependent MS/MS mode. Based on the hydrophobic interaction of glycyrrhizic acid with yuanhuacine (one of main ingredients from ), the supramolecular self-assembly mechanism was revealed with proton nuclear magnetic resonance (H-NMR) and NOESY 2D NMR. The toxicity of and /glycyrrhizic acid supramolecular complex were compared through studies on L-02 cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; and 4',6-diamidino-2-phenylindole (DAPI) staining was performed to further confirm the enhancement inhibition of /glycyrrhizic acid supramolecular complex than . This study provides fundamental scientific evidence of the formation of a self-assembled phytochemical supramolecular when and glycyrrhizic acid are combined, enabling to understand their clinical incompatibility and contraindication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733466PMC
http://dx.doi.org/10.3389/fchem.2021.740952DOI Listing

Publication Analysis

Top Keywords

supramolecular complex
16
glycyrrhizic acid
12
/glycyrrhizic acid
12
toxicity-enhancing essence
8
based ultra-high-performance
8
ultra-high-performance liquid
8
liquid chromatography
8
chromatography coupled
8
coupled quadrupole-orbitrap
8
quadrupole-orbitrap high-resolution
8

Similar Publications

Perylene diimide based fluorescent sensors for aqueous detection of perfluorooctane sulfonate (PFOS).

Anal Chim Acta

March 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA. Electronic address:

Background: Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical.

Results: In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS.

View Article and Find Full Text PDF

Chemically Triggered Reactive Coacervates Show Life-Like Budding and Membrane Formation.

J Am Chem Soc

January 2025

Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain.

Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation.

View Article and Find Full Text PDF

This study investigates the nature and interplay of noncovalent interactions (NCIs)─tetrel bonds (TB), hydrogen bonds (HB), and halogen bonds (XB)─in molecular assemblies formed between trifluorogermyl hypochlorite (FGeOCl) and hydrogen cyanide (HCN). Using a combination of high-level computational methods, we explored the geometric, energetic, and electronic properties of dimers, trimers, and tetramers formed in different molar ratios of interacting reagents. Various analyses reveal a significant cooperativity between TB and HB, which mutually reinforce each other, while XB interactions are diminished in the presence of TB and HB.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!