MiR-526b-3p Attenuates Breast Cancer Stem Cell Properties and Chemoresistance by Targeting HIF-2α/Notch Signaling.

Front Oncol

Department of Environmental and Occupational Health, School of Public Health, Qiqihar Medical University, Qiqihar, China.

Published: December 2021

Chemoresistance is a severe clinical challenge in breast cancer. Hypoxia and cancer stem cells (CSCs) contribute to the paclitaxel (PTX) resistance, but the molecular mechanisms are still elusive. MicorRNAs (miRNA) have been considered a promising therapeutic strategy in various cancers. Here, we identified the crucial function of miR-526b-3p in regulating PTX resistance and CSC properties. Our data demonstrated that miR-526b-3p mimic repressed the cell viability of breast cancer cells. The counts of Edu-positive cells were reduced by miR-526b-3p in breast cancer cells. Meanwhile, the apoptosis of breast cancer cells was induced by miR-526b-3p. Tumorigenicity analysis in the nude mice confirmed that miR-526b-3p attenuated the breast cancer cell growth Significantly, hypoxia could enhance IC value of PTX in breast cancer cells. IC value of PTX was induced in breast cancer mammospheres. The hypoxia-inducible factor 2α (HIF-2α) expression was enhanced, but miR-526b-3p expression was repressed under hypoxia in breast cancer cells. Also, breast cancer mammospheres presented high HIF-2α expression and low miR-526b-3p expression. The inhibition of miR-526b-3p enhanced the IC value of PTX in breast cancer cells. MiR-526b-3p inhibitor enhanced the colony formation counts of PTX-treated breast cancer cells. The treatment of miR-526b-3p mimic suppressed the sphere formation counts of breast cancer cells and inhibited ALDH1 and Nanog expression. MiR-526b-3p was able to target HIF-2α in the cells. The overexpression enhanced but miR-526b-3p reduced the IC value of PTX in breast cancer cells, in which the overexpression of HIF-2α could rescue the miR-526b-3p-inhibited IC value of PTX. Overexpression of HIF-2α reversed miR-526b-3p-regulated apoptosis, colony formation ability, and ALDH1 and Nanog expression in the cells. Interestingly, the overexpression of HIF-2α induced but miR-526b-3p repressed the expression of HIF-2α, Hey2, and Notch in PTX-treated breast cancer cells, while HIF-2α could reverse the effect of miR-526b-3p. In conclusion, miR-526b-3p attenuated breast cancer stem cell properties and chemoresistance by targeting HIF-2α/Notch signaling. MiR-526b-3p may be utilized in the relieving chemoresistance in breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733566PMC
http://dx.doi.org/10.3389/fonc.2021.696269DOI Listing

Publication Analysis

Top Keywords

breast cancer
68
cancer cells
40
cancer
18
mir-526b-3p
17
breast
17
cells
14
cancer stem
12
ptx breast
12
overexpression hif-2α
12
stem cell
8

Similar Publications

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

Purpose: To evaluate the prognostic significance of changes in pre- and post-neoadjuvant chemotherapy (NACT) Ki67 in patients with primary invasive triple-negative breast cancer (TNBC).

Methods: Population-based registry data were retrieved for patients diagnosed with TNBC between 2007 and 2021 (n = 9262). Multivariable Cox regression analysis was performed for disease-specific survival (DSS) and overall survival (OS) adjusted for age and residual disease in the breast and nodes (RDBN).

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!