The myelodysplastic syndromes are characterized by ineffective hematopoiesis and refractory cytopenias. In an attempt to improve hematopoiesis, we administered recombinant human granulocyte--macrophage colony-stimulating factor (GM-CSF) to eight patients with myelodysplastic syndrome, as part of a Phase I trial. The GM-CSF was given by continuous intravenous infusion daily for two weeks and then again after a two-week rest period. Over the entire dose range tested (30 to 500 micrograms per square meter of body-surface area), treatment was associated with marked increases in peripheral-blood leukocytes (5- to 70-fold), including granulocytes (5- to 373-fold), in all eight patients. The absolute number of monocytes, eosinophils, and lymphocytes increased in all patients. Three of eight patients also had 2- to 10-fold increases in platelet counts and improvement in erythropoiesis, with the result that two of three patients who had required red-cell and platelet transfusions no longer needed them (at 20 to 27 weeks of follow-up). Treatment was also associated with increased marrow cellularity and a decreased percentage of blasts in the bone marrow of patients with excess blasts, resulting in an increase in the ratio of differentiated myeloid cells to immature myeloid cells. We observed relatively few side effects, but bone pain was dose-limiting when it was associated with high white-cell counts. Our results showed that GM-CSF is a potent stimulator of hematopoiesis in vivo and may produce hematologic improvement in the short term (8 to 32 weeks of observation) in patients with myelodysplastic syndrome. More experience, with longer follow-up periods, will be necessary to assess the long-term safety and efficacy of this new treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJM198712173172501DOI Listing

Publication Analysis

Top Keywords

patients myelodysplastic
12
recombinant human
8
colony-stimulating factor
8
patients
8
myelodysplastic syndromes
8
myelodysplastic syndrome
8
treatment associated
8
three patients
8
myeloid cells
8
effects recombinant
4

Similar Publications

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

An 86-year-old male patient developed paresthesia in both hands, and six months later, pancytopenia was noted. He was diagnosed with myelodysplastic syndrome following bone marrow aspiration. Despite high serum vitamin B12 level, elevated level of serum homocysteine, positive anti-intrinsic factor antibody, and T-weighted hyperintense lesions on spinal cord MRI led to a diagnosis of subacute combined degeneration of the spinal cord.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!