Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The performance of structured illumination microscopy (SIM) systems depends on the computational method used to process the raw data. In this paper, we present a regularized three-dimensional (3D) model-based (MB) restoration method with positivity constraint (PC) for 3D processing of data from 3D-SIM (or 3-beam interference SIM), in which the structured illumination pattern varies laterally and axially. The proposed 3D-MBPC method introduces positivity in the solution through the reconstruction of an auxiliary function using a conjugate-gradient method that minimizes the mean squared error between the data and the 3D imaging model. The 3D-MBPC method provides , which is not the same as improved optical sectioning demonstrated with model-based approaches based on the 2D-SIM (or 2-beam interference SIM) imaging model, for either 2D or 3D processing of a single plane from a 3D-SIM dataset. Results obtained with our 3D-MBPC method show improved 3D resolution over what is achieved by the standard generalized Wiener filter method, the first known method that performs 3D processing of 3D-SIM data. Noisy simulation results quantify the achieved 3D resolution, which is shown to match theoretical predictions. Experimental verification of the 3D-MBPC method with biological data demonstrates successful application to data volumes of different sizes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713689 | PMC |
http://dx.doi.org/10.1364/BOE.442066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!