Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Colonic urea-nitrogen metabolites have been implicated in the pathogenesis of certain diseases which can be affected by environmental factors.
Objectives: We aimed to explore the influence of ambient humidity on colonic urea-nitrogen metabolism.
Methods: Blood biochemical indexes, metabolites of intestinal tract, and gut microbiota composition of mice ( = 10/group) exposed to high relative humidity (RH, 90 ± 2%) were analyzed during the 14-day exposure.
Results: After 12-h exposure, plasma blood urea nitrogen (BUN) level increased along with a decrease in the activity of erythrocyte Na/K -ATPase. Moreover, abnormal erythrocyte morphologies appeared after 3 days of exposure. The colonic BUN and ammonia levels increased significantly after the 12-h and 24-h exposure, respectively. The colonic level of amino acids, partly synthesized by gut microbiota using ammonia as the nitrogen source, was significantly higher on the 7th day. Furthermore, the level of fecal short-chain fatty acids was significantly higher after 3-day exposure and the level of branched-chain fatty acids increased on the 14th day. Overall, gut microbiota composition was continuously altered during exposure, facilitating the preferential proliferation of urea-nitrogen metabolism bacteria.
Conclusion: Our findings suggest that short-term high RH exposure influences colonic urea-nitrogen metabolism by increasing the influx of colonic urea and altering gut microbiota, which might further impact the host health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721250 | PMC |
http://dx.doi.org/10.1016/j.jare.2021.03.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!