A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence to Automatically Assess Scan Quality in Hip Ultrasound. | LitMetric

Purpose: Since it is fast, inexpensive and increasingly portable, ultrasound can be used for early detection of Developmental Dysplasia of the Hip (DDH) in infants at point-of-care. However, accurate interpretation\is highly dependent on scan quality. Poor-quality images lead to misdiagnosis, but inexperienced users may not even recognize the deficiencies in the images. Currently, users assess scan quality subjectively, based on image landmarks which are prone to human errors. Instead, we propose using Artificial Intelligence (AI) to automatically assess scan quality.

Methods: We trained separate Convolutional Neural Network (CNN) models to detect presence of each of four commonly used ultrasound landmarks in each hip image: straight horizontal iliac wing, labrum, os ischium and midportion of the femoral head. We used 100 3D ultrasound (3DUS) images for training and validated the technique on a set of 107 3DUS images also scored for landmarks by three non-expert readers and one expert radiologist.

Results: We got AI ≥ 85% accuracy for all four landmarks (ilium = 0.89, labrum = 0.94, os ischium = 0.85, femoral head = 0.98) as a binary classifier between adequate and inadequate scan quality. Our technique also showed excellent agreement with manual assessment in terms of Intraclass Correlation Coefficient (ICC) and Cohen's kappa coefficient () for ilium (ICC = 0.81,  = 0.56), os ischium (ICC = 0.89,  = 0.63) and femoral head (ICC = 0.83,  = 0.66), and moderate to good agreement for labrum (ICC = 0.65,  = 0.33).

Conclusion: This new technique could ensure high scan quality and facilitate more widespread use of ultrasound in population screening of DDH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688598PMC
http://dx.doi.org/10.1007/s43465-021-00455-wDOI Listing

Publication Analysis

Top Keywords

scan quality
20
assess scan
12
artificial intelligence
8
intelligence automatically
8
automatically assess
8
femoral head
8
3dus images
8
scan
6
quality
5
ultrasound
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!