Background: The current study is aimed at identifying the cross-talk genes between periodontitis (PD) and rheumatoid arthritis (RA), as well as the potential relationship between cross-talk genes and pyroptosis-related genes.

Methods: Datasets for the PD (GSE106090, GSE10334, GSE16134) and RA (GSE55235, GSE55457, GSE77298, and GSE1919) were downloaded from the GEO database. After batch correction and normalization of datasets, differential expression analysis was performed to identify the differentially expressed genes (DEGs). The cross-talk genes linking PD and RA were obtained by overlapping the DEGs dysregulated in PD and DEGs dysregulated in RA. Genes involved in pyroptosis were summarized by reviewing literatures, and the correlation between pyroptosis genes and cross-talk genes was investigated by Pearson correlation coefficient. Furthermore, the weighted gene coexpression network analysis (WGCNA) was carried out to identify the significant modules which contained both cross-talk genes and pyroptosis genes in both PD data and RA data. Thus, the core cross-talk genes were identified from the significant modules. Receiver-operating characteristic (ROC) curve analysis was performed to identify the predictive accuracy of these core cross-talk genes in diagnosing PD and RA. Based on the core cross-talk genes, the experimentally validated protein-protein interaction (PPI) and gene-pathway network were constructed.

Results: A total of 40 cross-talk genes were obtained. Most of the pyroptosis genes were not differentially expressed in disease and normal samples. By selecting the modules containing both cross-talk genes or pyroptosis genes, the blue module was identified to be significant module. Three genes, i.e., cross-talk genes (TIMP1, LGALS1) and pyroptosis gene-GPX4, existed in the blue module of PD network, while two genes (i.e., cross-talk gene-VOPP1 and pyroptosis gene-AIM2) existed in the blue module of RA network. ROC curve analysis showed that three genes (TIMP1, VOPP1, and AIM2) had better predictive accuracy in diagnosing disease compared with the other two genes (LGALS1 and GPX4).

Conclusions: This study revealed shared mechanisms between RA and PD based on cross-talk and pyroptosis genes, supporting the relationship between the two diseases. Thereby, five modular genes (TIMP1, LGALS1, GPX4, VOPP1, and AIM2) could be of relevance and might serve as potential biomarkers. These findings are a basis for future research in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8731299PMC
http://dx.doi.org/10.1155/2021/5074305DOI Listing

Publication Analysis

Top Keywords

cross-talk genes
44
genes
24
pyroptosis genes
20
cross-talk
13
genes cross-talk
12
genes pyroptosis
12
core cross-talk
12
blue module
12
genes timp1
12
genes linking
8

Similar Publications

AKT-FoxO1-PCK/ChREBP signaling pathway regulates metabolic liver disease induced by high glucose in largemouth bass.

Int J Biol Macromol

January 2025

National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).

View Article and Find Full Text PDF

The Roles of Phytohormones in Plant Defense Mechanisms Against the Brown Planthopper.

Genes (Basel)

December 2024

Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

The brown planthopper (BPH; Stål) is the most significant insect pest compromising rice production globally. Phytohormones, which are small organic compounds produced by plants, play a crucial role in regulating plant growth and development. Nevertheless, extensive research has established that phytohormones are essential in modulating plant defense against BPH.

View Article and Find Full Text PDF

The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review.

Int J Biol Macromol

January 2025

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:

In higher plants, sugars are the primary products of photosynthesis, where CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.

View Article and Find Full Text PDF

Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family.

Biochim Biophys Acta Gen Subj

February 2025

Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:

The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) remains a leading infectious disease responsible for millions of deaths. RNA sequencing is a rapidly growing technique and a powerful approach to understanding host and pathogen cross-talks via transcriptional responses. However, its application is limited due to the high costs involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!