Silent genes are DNA sequences that are generally not expressed or expressed at a very low level. These genes become active as a result of mutation, recombination, or insertion. Silent genes can also be activated in laboratory conditions using pleiotropic, targeted genome-wide, or biosynthetic gene cluster approaches. Like every other gene, silent genes can spread through horizontal gene transfer. Most studies have focused on strains with phenotypic resistance, which is the most common subject. However, to fully understand the mechanism behind the spreading of antibiotic resistance, it is reasonable to study the whole resistome, including silent genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702603PMC
http://dx.doi.org/10.33073/pjm-2021-040DOI Listing

Publication Analysis

Top Keywords

silent genes
20
silent
5
genes
5
genes antimicrobial
4
antimicrobial resistance
4
resistance antibiotic
4
antibiotic production
4
production silent
4
genes dna
4
dna sequences
4

Similar Publications

During the genomic characterisation of Enterococcus faecium strains (n = 39) collected in a haematology ward, we identified an isolate (OI25), which contained vanA-type vancomycin resistance genes but was phenotypically susceptible to vancomycin. OI25 could revert to resistance when cultured in the presence of vancomycin and was thus considered to be vancomycin-variable. Long-read sequencing was used to identify structural variations within the vancomycin resistance region of OI25 and to uncover its resistance reversion mechanism.

View Article and Find Full Text PDF

The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.

View Article and Find Full Text PDF

Bovine genital leptospirosis (BGL) is a silent and chronic reproductive syndrome associated with reproductive failures that result in animal suffering and substantial financial losses for farmers. Important aspects of the interactions between the host and the pathogen during chronic leptospirosis have been well described in the kidney, but little is known about the genital infection mechanisms. The present study sheds light on the pathophysiology of BGL based on comparative genomic analysis of renal versus genital isolates of genomes, an endemic species on Latin America.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish.

Nucleic Acids Res

January 2025

Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.

While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!