Stripe rust (caused by f. sp. ) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat () landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of f. sp. in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06-16.46% of the phenotypic variation. Five of the QTL, , , , and , were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728361PMC
http://dx.doi.org/10.3389/fpls.2021.783830DOI Listing

Publication Analysis

Top Keywords

stripe rust
28
wheat landraces
16
resistance stripe
16
chinese wheat
12
landraces stable
12
stable resistance
12
resistance
9
genome-wide association
8
wheat
8
snp array
8

Similar Publications

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

Pseudo-linkage or real-linkage of rust resistance genes in a wheat-Thinopyrum intermedium translocation line.

Theor Appl Genet

December 2024

Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.

We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.

View Article and Find Full Text PDF

f. sp. Exhibited a Significant Change in Virulence and Race Frequency in Xinjiang, China.

J Fungi (Basel)

December 2024

Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.

Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .

View Article and Find Full Text PDF

Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat.

J Agric Food Chem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!