MicroRNA (miRNA) is an important endogenous post-transcriptional regulator, while lettuce () is a leafy vegetable of global economic significance. However, there are few studies on miRNAs in lettuce, and research on miRNA regulatory network in lettuce is absent. In this study, through deep sequencing of small RNAs in different tissues, together with a reference genome, 157 high-confidence miRNA loci in lettuce were comprehensively identified, and their expression patterns were determined. Using a combination of computational prediction and high-throughput experimental verification, a set of reliable lettuce miRNA targets were obtained. Furthermore, through RNA-Seq, the expression profiles of these targets and a comprehensive view of the negative regulatory relationship between miRNAs and their targets was acquired based on a correlation analysis. To further understand miRNA functions, a miRNA regulatory network was constructed, with miRNAs at the core and combining transcription factors and miRNA target genes. This regulatory network, mainly composed of feed forward loop motifs, greatly increases understanding of the potential functions of miRNAs, and many unknown potential regulatory links were discovered. Finally, considering its specific expression pattern, as a hub gene was employed to illustrate the function of the regulatory network, and genetic experiments revealed its ability to increase the fresh weight and achene size of lettuce. In short, this work lays a solid foundation for the study of miRNA functions and regulatory networks in lettuce.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739914 | PMC |
http://dx.doi.org/10.3389/fpls.2021.781836 | DOI Listing |
Int J Biol Macromol
January 2025
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:
In higher plants, sugars are the primary products of photosynthesis, where CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.
View Article and Find Full Text PDFPsychiatry Res
December 2024
Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland.
Selecting the optimal dose of psilocybin for treating Major Depressive Disorder (MDD) and Treatment-Resistant Depression (TRD) is crucial for clinical development and regulatory approval. This meta-analysis evaluates psilocybin's efficacy and safety in treating MDD to determine the optimal dose and timing for clinical trials. A systematic review and Dose-Response Network Meta-Analysis (NMA) of Randomized Placebo-Controlled Clinical Trials (RCTs) registered with PROSPERO was conducted.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India. Electronic address:
Eukaryotic transcriptomes are remarkably complex, encompassing not only protein-coding RNAs but also an expanding repertoire of noncoding RNAs (ncRNAs). In plants, ncRNA-ncRNA interactions (NNIs) have emerged as pivotal regulators of gene expression, orchestrating development and adaptive responses to stress. Despite their critical roles, the functional significance of NNIs remains poorly understood, largely due to a lack of comprehensive resources.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!