Though some significant advances have been made in recent decades to evaluate the importance of size and morphology (habit) of elongate mineral particles (EMPs), further research is needed to better understand the role of each dimensional metric in determining the levels of cancer potency. To determine dimensional parameters most relevant for predicting cancer potency of durable elongate particles, specifically amphibole and durable silicate minerals generally. A database on dimensional and other relevant characteristics of elongate amphibole mineral particles was created, containing particle-by-particle information for 128 099 particles. Integral statistical characteristics on dimensionality of various amphibole types and morphological habits of EMPs were calculated, compared, and correlated with published mesothelioma and lung cancer potency factors. The highest absolute Pearson correlation ( = 0.97, = 0.94,  < 0.05) was achieved between mesothelioma potency (R) and specific surface area. The highest correlation with adjusted lung cancer potency was found with particle aspect ratio (AR) ( = 0.80, = 0.64,  < 0.05). Cluster analysis demonstrates that fractions of thin fibers (width less than 0.15 and 0.25 µm) also closely relate both to lung cancer and R. Asbestiform and non-asbestiform populations of amphiboles significantly differ by dimensionality and carcinogenic potency. Dimensional parameters and morphological habits of EMPs are the main drivers for the observable difference in cancer potency among amphibole populations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958378.2021.2024304DOI Listing

Publication Analysis

Top Keywords

mineral particles
12
cancer potency
12
amphibole mineral
8
particles
5
dimensional
4
dimensional characteristics
4
characteristics major
4
major types
4
amphibole
4
types amphibole
4

Similar Publications

Evaluation of radiation therapy on grafted and non-grafted defects: an experimental rat model.

J Appl Oral Sci

January 2025

Universidade Federal de Uberlândia, Faculdade de Odontologia, Departamento de Periodontia e Implantodontia, Uberlândia, Brasil.

Objective: This study aimed to assess the effects of a single-dose radiation therapy (15 Gy) on grafted and non-grafted defects, bone microarchitecture, and collagen maturity.

Methodology: Bone defects were surgically created in rat femurs. The right femur defect was filled with blood clot (group "Clot") and the left femur defect by deproteinized bovine bone mineral graft (group "Xenograft").

View Article and Find Full Text PDF

Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by the inhalation of silica particles. Silica dust inhalation is associated with inflammation and induction of oxidative stress in the lungs. This oxidative stress affects telomeres, which are short tandem DNA repeats that cap the end of linear chromosomes.

View Article and Find Full Text PDF

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

N influences on CH accumulation and displacement in shale by molecular dynamics.

Sci Rep

January 2025

School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.

N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.

View Article and Find Full Text PDF

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!