Sinonasal hamartomas are uncommon lesions of nasal and sinus cavities. Based on indigenous cellular components and characteristic histologic features, they are further classified into four entities: respiratory epithelial adenomatoid hamartoma (REAH), seromucinous hamartoma (SH), chondro-osseous and respiratory epithelial hamartoma (CORE), and nasal chondromesenchymal hamartoma (NCH). REAH, SH, and CORE are seen in adult patients, while NCH predominantly occurs in newborns and infants. Morphologically REAH and SH are composed of respiratory epithelium and seromucinous glands, CORE is related to REAH but with additional feature of chondroid and/or osseous tissue, and NCH is composed of chondroid and stromal elements but devoid of epithelial component. All four lesions can present as sinonasal mass lesions and with associated obstructive symptoms. Given the rarity of these lesions, diagnosis can be challenging, especially in unusual clinical scenario. In this study, we report six cases of sinonasal hamartoma, including one case of NCH, one case of CORE, two cases of SH, and two cases of REAH. All cases were from adult patients including four men and two women. We also review the literature of the clinical and pathologic features of these rare lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10668969211064211 | DOI Listing |
PLoS One
January 2025
Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America.
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).
View Article and Find Full Text PDFExpert Opin Emerg Drugs
January 2025
Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro - Catanzaro, Italy.
Introduction: Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life.
Areas Covered: This review aims to describe current biological therapies for severe asthma, highlighting emerging ones.
J Intensive Med
January 2025
Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona - SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), Barcelona, Spain.
Aminoglycosides are concentration-dependent antibiotics exerting a bactericidal effect when concentrations at the site of infection are equal to or greater than 5 times the minimum inhibitory concentrations (MIC). When administered intravenously, they exhibit poor lung penetration and high systemic renal and ototoxicity, imposing to restrict their administration to 5 days. Experimental studies conducted in anesthetized and mechanically ventilated sheep and pigs provide evidence that high doses of nebulized aminoglycosides induce a rapid and potent bacterial killing in the infected lung parenchyma.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany.
Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.
Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.
Heliyon
January 2025
Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China.
Background: Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!