Multifunctional inorganic nanomaterials for cancer photoimmunotherapy.

Cancer Commun (Lond)

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.

Published: February 2022

Phototherapy and immunotherapy in combination is regarded as the ideal therapeutic modality to treat both primary and metastatic tumors. Immunotherapy uses different immunological approaches to stimulate the immune system to identify tumor cells for targeted elimination. Phototherapy destroys the primary tumors by light irradiation, which induces a series of immune responses through triggering immunogenic cancer cell death. Therefore, when integrating immunotherapy with phototherapy, a novel anti-cancer strategy called photoimmunotherapy (PIT) is emerging. This synergistic treatment modality can not only enhance the effectiveness of both therapies but also overcome their inherent limitations, opening a new era for the current anti-cancer therapy. Recently, the advancement of nanomaterials affords a platform for PIT. From all these nanomaterials, inorganic nanomaterials stand out as ideal mediators in PIT due to their unique physiochemical properties. Inorganic nanomaterials can not only serve as carriers to transport immunomodulatory agents in immunotherapy owing to their excellent drug-loading capacity but also function as photothermal agents or photosensitizers in phototherapy because of their great optical characteristics. In this review, the recent advances of multifunctional inorganic nanomaterial-mediated drug delivery and their contributions to cancer PIT will be highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822595PMC
http://dx.doi.org/10.1002/cac2.12255DOI Listing

Publication Analysis

Top Keywords

inorganic nanomaterials
12
multifunctional inorganic
8
nanomaterials
5
nanomaterials cancer
4
cancer photoimmunotherapy
4
phototherapy
4
photoimmunotherapy phototherapy
4
immunotherapy
4
phototherapy immunotherapy
4
immunotherapy combination
4

Similar Publications

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!