The role of fibroblast growth factor 8 in cartilage development and disease.

J Cell Mol Med

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Published: February 2022

Fibroblast growth factor 8 (FGF-8), also known as androgen-induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF-8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca , RAS/mitogen-activated protein kinase-extracellular regulated protein kinases (RAS/MAPK-MEK-ERK), and Wnt-β-catenin-Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF-8 in normal or pathological cartilage remains unclear, and thus, FGF-8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF-8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF-8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF-8 is proposed to explore the possibility of treating chondrocyte-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831980PMC
http://dx.doi.org/10.1111/jcmm.17174DOI Listing

Publication Analysis

Top Keywords

growth factor
16
fibroblast growth
12
fgf-8 chondrocytes
8
fgf-8
7
role fibroblast
4
growth
4
factor
4
factor cartilage
4
development
4
cartilage development
4

Similar Publications

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.

Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.

View Article and Find Full Text PDF

Background: Glial cell line-derived neurotrophic factor (GDNF) has emerged as a potential biomarker for schizophrenia (SCZ). However, GDNF levels remain unclear in affected individuals compared to healthy controls. Therefore, we aimed to calculate a pooled estimate of GDNF levels in patients with SCZ in comparison with healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!