Influence of nano and bulk copper on agile frog development.

Ecotoxicology

Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia.

Published: March 2022

Nanotechnology, as one of the fastest-growing industries, offers many benefits in various fields. However, properties that contribute to its positive effects, in other context, can cause adverse effects to various organisms, such as amphibians. Identifying possible negative effects on its survival is crucial since amphibians are the most threatened group of vertebrates. In that context, we investigated the influence of both nano and bulk copper on embryonic development of agile frog, Rana dalmatina. The embryos were exposed to various concentrations (0.01 mg/L, 0.075 mg/L, 0.15 mg/L or 0.3 mg/L) of either nano (CuO, declared size 40-80 nm) or bulk form (CuSO·5HO) for 16 days. Upon the experiment, tadpoles were measured and weighted, then homogenized and their protein, lipid, and carbohydrates content determined, as well as the activity of LDH. Our results suggest stronger negative influence of nano copper to size and weight of tadpoles, and bulk copper on lipid content, while both had strong negative effect on carbohydrates content, and LDH activity. In addition, our results suggest agile frog to be more susceptible to negative influence of both, nano and bulk copper, than commonly used Xenopus laevis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-021-02506-2DOI Listing

Publication Analysis

Top Keywords

influence nano
16
bulk copper
16
nano bulk
12
agile frog
12
carbohydrates content
8
negative influence
8
bulk
5
copper
5
influence
4
copper agile
4

Similar Publications

Chirality Interplay of Peptide and Saccharide on Glycopeptide Self-Assembly.

Nano Lett

January 2025

Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.

Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.

View Article and Find Full Text PDF

Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis.

View Article and Find Full Text PDF

Ultra-high electrostriction and ferroelectricity in poly (vinylidene fluoride) by 'printing of charge' throughout the film.

Nat Commun

January 2025

State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.

Electrostriction is an important electro-mechanical property in poly (vinylidene fluoride) (PVDF) films, which describes the proportional relation between the electro-stimulated deformation and the square of the electric field. Generally, traditional methods to improve the electrostriction of PVDF either sacrifice other crystalline-related key properties or only influence minimal regions around the surface. Here, we design a unique electret structure to fully exploit the benefits of internal crystal in PVDF films.

View Article and Find Full Text PDF

Bacterial Nanovesicles as Interkingdom Signaling Moieties Mediating Pain Hypersensitivity.

ACS Nano

January 2025

Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.

Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.

View Article and Find Full Text PDF

Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!