Dominance hierarchies typically emerge in systems where group members regularly encounter and compete for resources. In birds, the 'open' and dynamic structure of foraging groups may prevent the emergence of structured hierarchies, although this assumption have hardly been tested. We report on agonistic data for ravens , collected over two 18-month periods for 183 marked individuals of a wild (fluid) population and 51 birds from six captive (stable) groups. We show that the dominance structure (steep and transitive) in wild foraging groups is strikingly similar to that found in captivity. In the wild, we found that higher ranks are mainly occupied by males, older and more aggressive individuals that also tend to receive fewer aggressions. Exploring the mechanisms sustaining the wild dominance structure, we confirmed that males are more aggressive than females and, with age, tend to receive fewer aggressions than females. Males that are about to leave the foraging groups for some months are less aggressive than newcomers or locals, while newcomers are specifically targeted by aggressions in their first year (as juveniles). Taken together, our results indicate that the socially dynamic conditions ravens face during foraging do not hinder, but provide opportunities for, using (advanced) social cognition. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743890 | PMC |
http://dx.doi.org/10.1098/rstb.2020.0446 | DOI Listing |
Vet Med Sci
January 2025
Faculty of Veterinary Medicine, Department of Animal Breeding and Husbandry, Ondokuz Mayıs University, Samsun, Turkey.
Background: Ration composition may significantly impact the nutrient absorption, duodenal parameters, intestinal health and feed efficiency of animals.
Objectives: The objective of this study was to analyse the impact of concentrate- and forage-based diets on essential morphological parameters of the duodenum, including villus height, villus width, crypt depth and goblet cell density, in three different lamb breeds.
Methods: Forty-five lambs, aged between 2.
Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
January 2025
Department of Psychology, Royal Holloway, University of London, London, UK.
Adolescence is a developmental period of relative volatility, where the individual experiences significant changes to their physical and social environment. The ability to adapt to the volatility of one's surroundings is an important cognitive ability, particularly while foraging, a near-ubiquitous behaviour across the animal kingdom. As adolescents experience more volatility in their surroundings, we predicted that this age group would be more adept than adults at using exploration to adjust to volatility.
View Article and Find Full Text PDFMar Environ Res
December 2024
Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, HORTA, 9900-138, Portugal.
Plastic ingestion has been extensively studied in seabirds. However, knowledge gaps remain in understanding how plastic loads behave over time and their residence inside Procellariforms. This study investigated the temporal dynamics of ingested plastics by adult Cory's shearwaters (Calonectris borealis) during the breeding season to shed light on plastic retention times.
View Article and Find Full Text PDFArch Microbiol
January 2025
Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt.
Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!