Extracting osmotic energy through nanoporous membranes is an efficient way to harvest renewable and sustainable energy using the salinity gradient between seawater and river water. Despite recent advances of nanopore-based membranes, which have revitalized the prospect of blue energy, their energy conversion is hampered by nanomembrane issues such as high internal resistance or low selectivity. Herein, we report a lamellar-structured membrane made of nanoporous TiCT MXene sheets, exhibiting simultaneous enhancement in permeability and ion selectivity beyond their inherent trade-off. The perforated nanopores formed by facile HSO oxidation of the sheets act as a network of cation channels that interconnects interplanar nanocapillaries throughout the lamellar membrane. The constructed internal nanopores lower the energy barrier for cation passage, thereby boosting the preferential ion diffusion across the membrane. A maximum output power density of the nanoporous TiCT MXene membranes reaches up to 17.5 W·m under a 100-fold KCl gradient at neutral pH and room temperature, which is as high as by 38% compared to that of the pristine membrane. The membrane design strategy employing the nanoporous two-dimensional sheets provides a promising approach for ion exchange, osmotic energy extraction, and other nanofluidic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793134 | PMC |
http://dx.doi.org/10.1021/acsnano.1c08347 | DOI Listing |
ACS Appl Mater Interfaces
July 2019
Key Laboratory of Advanced Materials Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University, Zhengzhou 450002 , China.
Electromagnetic (EM) pollution affecting people's normal lives and health has attracted considerable attention in the current society. In this work, a promising EM wave absorption and shielding material, MXene/Ni hybrid, composed of one-dimensional Ni nanochains and two-dimensional TiCT nanosheets (MXene), is successfully designed and developed. As expected, excellent EM wave absorption and shielding properties are obtained and controlled by only adjusting the MXene content in the hybrid.
View Article and Find Full Text PDFACS Sens
May 2019
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University, 2699 Qianjin Street , Changchun 130012 , People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!