The performance of energy storage materials is often governed by their structure at the atomic scale. Conventional electron microscopy can provide detailed information about materials at these length scales, but direct imaging of light elements such as lithium presents a challenge. While several recent techniques allow lithium columns to be distinguished, these typically either involve complex contrast mechanisms that make image interpretation difficult or require significant expertise to perform. Here, we demonstrate how center-of-mass scanning transmission electron microscopy (CoM-STEM) provides an enhanced ability for simultaneous imaging of lithium and heavier element columns in lithium ion conductors. Through a combination of experiments and multislice electron scattering calculations, we show that CoM-STEM is straightforward to perform and produces directly interpretable contrast for thin samples, while being more robust to variations in experimental parameters than previously demonstrated techniques. As a result, CoM-STEM is positioned to become a reliable and facile method for directly probing all elements within energy storage materials at the atomic scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c09374DOI Listing

Publication Analysis

Top Keywords

electron microscopy
12
imaging lithium
8
center-of-mass scanning
8
scanning transmission
8
transmission electron
8
energy storage
8
storage materials
8
atomic scale
8
lithium
5
robust atomic-resolution
4

Similar Publications

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.

Biotechnol Bioeng

January 2025

Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.

The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!